Contents

About this series page 1

1. Scope of SHPN 06 page 4
 1.1 Introduction
 1.4 The patient experience
 1.5 Inclusions
 1.10 Exclusions
 1.11 Context of this guidance
 1.17 Why is the new guidance required?
 1.22 History of previous Health Building and Health Guidance Notes
 1.23 Intended audience
 1.25 Legislative and policy context
 1.25 Diagnostic imaging policies and guidance
 1.27 Key Scottish Executive and NHSScotland policy initiatives
 1.29 Legislative requirements
 1.37 Acts and Regulations
 1.38 Summary

2. Diagnostic imaging and interventional radiology services page 13
 2.1 General
 2.7 What makes up modern diagnostic imaging?
 2.12 Organisation of the imaging modalities
 2.21 General patient journey
 2.27 Professional staff groups and volunteers

3. Imaging approach page 21
 3.1 Introduction
 3.9 Procurement of film processing services
 3.10 Procurement strategies
 3.12 Image acquisition – conventional X-ray film processing
 3.12 Accommodation required: the film processing and viewing area
 3.22 Other considerations affecting processing area accommodation requirements
 3.25 Accommodation required: darkroom facilities
 3.38 Accommodation required: unused film and chemical store
 3.42 Conventional film processing equipment
 3.59 Image acquisition – part-digital approaches
 3.59 Conventional film processing with a digital storage option
3.64 Other part-digital approaches
3.66 Equipment required for part-digital approaches

3.77 Image acquisition – computed radiography (CR) – fully digital approach
3.77 Introduction
3.80 CR workflow and technology
3.93 Advantages of CR over conventional film techniques
3.94 Disadvantages of CR compared with conventional film techniques

3.97 Image acquisition – direct radiography (DR) – fully digital approach
3.100 Storing, handling and distribution of images – conventional and part-digital
3.101 Film sorting and collating: dispatch and return
3.115 Film archives

3.125 Storing, handling and distribution of images – fully digital approach
3.125 Sorting, collating, film dispatch and return, film archiving

3.132 Image reporting
3.139 Radiologists’ offices
3.143 Shared imaging reporting areas
3.153 Environmental requirements for reporting

3.156 Secretarial space and rooms
3.160 Multidisciplinary clinical case conference rooms
3.161 Conventional film-based departments supporting some digital modalities
3.166 Digitally-based departments
3.168 Summary

4. General X-ray imaging or radiology
4.1 Introduction

4.4 Clinical and operational objectives
4.4 Cancer imaging
4.8 Chest imaging
4.15 Fracture and orthopaedic clinics
4.19 Mobile general radiography
4.22 General support for A&E

4.24 Patient journey
4.25 Referral
4.26 Examination attendance
4.32 Special paediatric considerations

4.33 List of accommodation
4.37 Room and equipment descriptions
4.37 Examination area
4.54 Control area
4.67 Changing cubicles
4.76 Sub-waiting areas

4.80 Unique operational requirements and facilities – special cases
4.80 Trauma X-ray imaging equipment and special aspects of room design - DGH level
4.91 Trauma imaging centres at tertiary level and larger DGHs
4.108 Mobile radiographic systems
4.111 Methods for overcoming challenges
4.118 Skull X-ray systems and appropriate room adaptations

5. Facilities for universal fluoroscopy and remote fluoroscopy systems

5.1 Background
5.6 Clinical and operational objectives for universal and remote fluoroscopy/fluorography imaging systems
5.6 Contrast media – general introduction
5.8 Barium contrast procedures
5.13 Micturating cystography
5.16 Post-mortem work
5.17 Endoscopic Retrograde Cholangiopancreatography (ERCP)
5.18 Hysterosalpingography (HSG)

5.19 Patient journey
5.31 List of accommodation
5.32 Room and equipment descriptions
5.32 Examination room
5.51 Control area
5.54 Barium preparation area
5.55 Disposal of barium contrast media
5.56 Dedicated disabled access toilet
5.57 Sub-waiting area
5.61 Changing facilities

6. Fluoroscopy equipment for vascular and non-vascular imaging and interventional procedures

6.1 Introduction
6.3 Clinical and operational objectives
6.3 Examples of non-vascular imaging
6.7 Examples of non-vascular intervention
6.12 Examples of vascular imaging
6.14 Examples of vascular interventions

6.17 Patient journey
6.31 List of accommodation
6.32 Room and equipment descriptions
6.32 Examination room
6.53 Control/review area
6.59 Anaesthetic and post-procedure recovery combined area
6.64 Separate anaesthetic and recovery areas
6.66 Sterile store and preparation area
6.67 Dirty utility store
6.68 Staff changing facilities
6.69 Associated specialised engineering requirements
6.70 Mobile fluoroscopy equipment and the requirements for operating theatres and other environments – special case

7. Specialised angiographic systems for cardiac applications
7.1 Background and introduction
7.6 Clinical and operational objectives – adults
7.6 X-ray coronary angiography
7.10 Percutaneous Coronary Intervention (PCI)
7.12 Patient journey – adults
7.16 Patient journey – paediatrics
7.17 List of accommodation for tertiary centre provision
7.19 Room and equipment descriptions
7.19 Examination room
7.27 Accommodation to support the examination room
7.28 Operational policies
7.32 Functional relationships

8. Radionuclide imaging facilities based on gamma (Anger) camera systems
8.1 Background and introduction
8.7 Clinical and operational objectives
8.7 Introduction
8.9 Cardiac function tests
8.11 Diagnosis of infection
8.12 Renal examinations
8.13 Brain scanning
8.14 Lung scanning
8.15 Bone scanning
8.16 List of accommodation and location of radionuclide imaging facilities
8.26 Room and equipment descriptions
8.26 The radionuclide imaging examination room
8.51 Cardiac considerations – stress room
8.55 Viewing and reporting facilities
8.59 Injection room
8.64 Low level radioactive waste disposal area
8.68 Waiting area
8.74 Radionuclide imaging toilet
8.79 Staff changing facilities
8.80 Showers
8.81 The radiopharmacy
8.83 Radiopharmaceutical production
8.88 Radiopharmacy design
8.93 List of accommodation
8.94 Delivery of radioisotopes
8.97 Aseptic room – open and closed procedures preparation area
8.110 Access area to the radiopharmacy aseptic preparation area
8.112 Access to preparation and storage area
8.114 Access to Aseptic Facility
8.122 Special engineering requirements including drainage
8.123 Mobile gamma camera – special case

9. Positron Emission Tomography (PET) without cyclotron provision
9.1 Background and information
9.4 Clinical and operational objectives
9.4 Production of radionuclides used in PET
9.6 Clinical applications
9.7 List of accommodation and location of PET facilities
9.13 Room and equipment descriptions
9.13 PET imaging or examination room
9.24 Control room
9.31 Facility for the handling and disposal of radiopharmaceuticals
9.41 Injection room and supporting facilities
9.50 Changing areas for staff
9.51 Patient toilet

10. X-ray mammographic imaging
10.1 Background and information
10.8 Screening
10.19 Symptomatic patients
10.23 Patient journey
10.23 Screening
10.24 Symptomatic patients
10.28 General aspects
10.30 Biopsy procedures
10.34 List of accommodation for X-ray mammography
10.37 Room and equipment descriptions
10.38 Mammography suite used for the diagnosis of symptomatic patients
10.54 Radiation protection
10.57 Changing facilities
10.58 Counselling room
10.59 Sub-waiting area
10.60 Needle biopsy work – additional facilities
10.62 Facility implications for screening
10.63 Digital mammography room design requirements
10.65 Special film processing needs

11. Ultrasound imaging

11.1 Background and information
11.11 Procurement and replacement
11.12 Imaging approach
11.14 Clinical and operational objectives
11.17 Patient journey
11.17 Referrals to a unit within a diagnostic imaging department
11.19 Attending the examination
11.28 Exit from the examination
11.30 Patient journey special case – interventional procedures
11.33 List of accommodation and location of the ultrasound suite
11.40 Room and equipment descriptions
11.40 General ultrasound imaging room
11.53 Changing facilities
11.54 Sub-waiting areas
11.55 Special cases
11.55 Paediatric ultrasound imaging
11.58 Special requirements for obstetric and gynaecological ultrasound
11.61 Facilities for vascular ultrasound
11.62 Interventional/intraluminal ultrasound special environment
11.76 Special notes regarding earthing and power supply arrangements

12. Computed Tomography

12.1 Background and information
12.6 Spiral CT scanning
12.9 Clinical and operational objectives
12.9 Vascular applications
12.11 CT angiography
12.14 Surgical planning
12.15 Thoracic scanning
12.18 Radiotherapy treatment planning
12.21 Patient journey
12.21 Patient information
12.23 Appointments
12.24 Biopsy and interventional work
12.25 Referrals from CT
12.26 ITU and A&E referrals
12.27 Patient preparation
12.32 The scanning process

Version 1.0: March 2004
© NHSScotland Property and Environment Forum
12.42 Interventional CT
12.46 List of accommodation for CT
12.47 Room descriptions and location of CT
 12.47 Siting requirements
 12.55 Ancillary accommodation
 12.59 Reception
 12.61 Patient sub-waiting area
 12.67 Bed/trolley/wheelchair waiting area
 12.68 Patient toilets
 12.70 Changing cubicles
 12.71 Anaesthetising (preparation)/recovery area
 12.81 Clean and dirty utilities
 12.82 CT scanner room
 12.94 Control room
 12.102 Reporting and image review room
 12.103 Counselling room

13. Magnetic Resonance Imaging
 13.1 Background and information
 13.4 Signal detection
 13.5 Static magnetic field production
 13.11 Gradient coils
 13.12 Trends in MRI imaging
 13.13 Clinical and operational objectives
 13.14 Cancer imaging and diagnosis – general case
 13.24 Further clinical uses
 13.25 The patient journey and the concept of magnetic controlled area
 and safety principles
 13.27 Reception
 13.28 Patient’s interview and checklist
 13.31 Patient changing
 13.38 Patient preparation area/anaesthesia and recovery area
 13.39 Trolley and wheelchair storage area
 13.40 List of accommodation and facilities for whole body imaging suites
 13.41 Room and equipment descriptions
 13.41 Patient, staff and visitor lockers
 13.42 Patient toilets
 13.43 Cleaners’ store cupboard (dedicated for non-ferromagnetic
 materials)
 13.45 Resuscitation bay
 13.46 Anaesthetic/recovery area
 13.56 Interviewing/counselling room
 13.60 MRI examination room
 13.72 Engineering or technical room
 13.78 Control room
13.88 Siting requirements and control of radiofrequency (RF) radiations
13.100 Fire precautions

14. Mobile vehicle scanning units to include CT/MRI and PET page 213
14.1 Background and information
14.8 Sequence of events
14.9 Site specifications
 14.11 Size
 14.12 Access to the site
 14.16 Patient access considerations
 14.18 Wheelchair access to the mobile unit
 14.19 Concrete support specifications
 14.20 Turning circles
 14.21 Vibration challenges
 14.22 Service supply pod
14.23 Service requirements
 14.23 Electrical and earthing strategies
 14.28 Data and film communication links
 14.30 Telephones
 14.32 Water and drainage
14.34 Special consideration for MRI scanners
 14.34 Chilled water supply
 14.35 Medical emergencies
 14.36 Fire precautions
 14.37 Maintenance and housekeeping
 14.38 Cryogen transfers
 14.39 Cryogen venting
 14.40 Magnetic fields
14.42 Special considerations for mobile vehicle X-ray, CT and PET scanners
 14.42 Radiation protection
 14.43 Cardiac angiography

15. Ancillary patient accommodation page 224
15.1 Reception areas
15.8 Patient journeys
15.9 Waiting areas
 15.14 People with disabilities
15.15 Separate male and female changing areas – changing cubicles
15.17 Counselling and private consulting rooms
15.20 Patient entertainment and refreshment facilities
16. **Staff and special activity accommodation**
16.1 Office accommodation
16.3 Superintendent/Senior radiographer/technologist accommodation
16.7 Education facilities
16.11 Staff location system
16.12 Telephones and intercom systems
16.12.1 Telephones
16.15 Intercom systems
16.17 Clocks
16.18 Auxiliary areas for clean and dirty utility, trolley lay-up and associated nursing functions
16.18.1 Dirty utility
16.24 Linen store
16.25 Cleaners’ room
16.26 Secure storage areas
16.27 Clean utility
16.28 Patient call systems
16.29 Staff emergency call systems
16.30 Staff rest rooms
16.31 Staff changing rooms including surgical scrub, shower and WC facilities
16.32 On-call/night duty radiography facilities
16.33 Porters’ base

17. **Appendices**
17.1 Appendix 1: Example plans
17.2 Appendix 2: Engineering requirements
17.3 Appendix 3: Glossary of terms, abbreviations and further information on clinical techniques

References

Disclaimer
The contents of this document are provided by way of guidance only. Any party making any use thereof or placing any reliance thereon shall do so only upon exercise of that party’s own judgement as to the adequacy of the contents in the particular circumstances of its use and application. No warranty is given as to the accuracy of the contents and the Property and Environment Forum Executive, which produced this document on behalf of NHSScotland Property and Environment Forum, will have no responsibility for any errors in or omissions therefrom.

The production of this document was jointly funded by the Scottish Executive Health Department and the NHSScotland Property and Environment Forum.
About this series

The Scottish Health Planning Note series is intended to give advice on the briefing and design of healthcare premises in Scotland.

These Notes are prepared in consultation with representatives of National Health Service Scotland and appropriated professional bodies. Health Planning Notes are aimed at multidisciplinary bodies engaged in:

- designing new buildings;
- adapting or extending existing buildings.

Throughout the series, particular attention is paid to the relationship between the design of a given department and its subsequent management. Since this equation will have important implications for capital and running costs, alternative solutions are sometimes proposed. The intention is to give the reader informed guidance on which to base design decisions.

This document was adapted by the Property and Environment Forum Executive from the core text provided by NHS Estates, England.

Aims and objectives

This document is aimed at a broad audience and covers the subject from its clinical and operational roots through to the design and equipping of imaging departments.

The key role is to report on the built environment required to implement the planning, construction, commissioning and operation of a new or upgraded facility. This extends to improving the built environment in which care is delivered, so as to promote efficiency and raise service quality.

This document also aims to employ innovation in the built environment, advancing the modernisation of diagnosis and treatment, in order to provide an environment that is genuinely sympathetic to the needs of all users and recognises the broad range of activities present and their significance.

Overview of the subject

The area of diagnostic imaging is currently undergoing great change, with hospitals becoming more and more reliant on the use of digital imaging techniques. However, a number of departments still continue to make use of more conventional technologies, at least for the simpler examinations. Both approaches are therefore described in this document.

The intense sophistication of modern imaging diagnosis and treatment, coupled with the need for continuing advance, has shaped the structure and content of
the document. The built environment today should liberate professional care providers to move forward to best techniques and practices. There is also a requirement to create adaptable facilities, in order to meet the pace of clinical and technological development, not only in patient diagnosis and treatment, but also in many other aspects of care and organisation.

The use of interventional radiology procedures is recognised, as is the overall impact that this has on the built environment. Such procedures now make up almost 15% of the total workload of many diagnostic imaging departments.

The patient experience

The technological nature of diagnostic imaging and interventional radiology can often be an unpleasant and distressing experience for patients and their carers. It is of the utmost importance in designing facilities that the patient experience is taken into account. The emphasis should be on providing a pleasant and comfortable environment for patients at all times.

Structure

SHPN 06 is to be published in two parts.

Part 1 builds from introductory sections describing possible imaging approaches, that is, conventional, part digital or fully digital. It then deals with each of the major imaging modalities considering policy, clinical and scientific matters. It also describes the patient journey and associated care protocols and uses these to inform the design process for the built environment.

Appendices include text on the specialist engineering requirements, example plans and a full glossary of terms including some basic clinical descriptions. A supplement examines the built environment implications of fully digital solutions and how they may affect the design of facilities and their relationships to other parts of the hospital.

Part 2 of the guidance, to be published later, will look at the department as a whole and examine planning relationships between modalities and other areas of the hospital in much more detail. Consideration will also be given to the provision of services at all three levels of healthcare. The guidance will be supplemented with a future section on Tertiary Diagnostic Imaging and Interventional Services.

Other documents of relevance to imaging services

SHPN 06 Part 1 is constructed against a sliding scale of environment specialisation. Those rooms or areas devoted entirely to imaging services are described in detail. However, those used incidentally for such care, together with common areas, are simply listed and the reader is directed to other publications as appropriate.
Notable among these are:

- Scottish Health Planning Note 15, *Accommodation for pathology services*;
- Health Building Note 22, *Accident and Emergency Department in an Acute General Hospital* (adapted for use in Scotland);
- Health Building Note 29, *Accommodation for pharmaceutical services* (not adapted for use in Scotland, may be used with general caution);
- Health Building Note 40, *Common activity spaces, Volume 2, Treatment areas* (adapted for use in Scotland);
- Scottish Health Planning Note 54, *Facilities for cancer care centres*;
- Health Building Note 26, *Operating Department*;
- Scottish Hospital Planning Note 26, *Operating department*, to be read in conjunction with HBN 26.

Acknowledgements

The Property and Environment Forum Executive gratefully acknowledges the assistance received from the following individuals in the preparation of this SHPN:

Dr R H Corbett Hairmyres Hospital

Professor A. Elliott Western Infirmary, Glasgow
1. Scope of SHPN 06

Introduction

1.1 This document provides guidance for the design of diagnostic imaging and interventional radiology facilities and services. It recognises the provision of diagnostic services at primary care level, as well as the differences between tertiary and secondary level healthcare providers. It covers a wide range of design options with discussion of factors that will inform selection of the most appropriate option.

1.2 Generally, no previous knowledge is assumed and references are provided for further reading if required. A glossary of terms is also included in the appendices. The document indicates any crossover or inter-linking with existing work published by other agencies, noting potential effects on the built environment and providing appropriate references. Notable examples of such crossover are the implications of guidance on cardiology and oncology.

1.3 Refer to SHPN 03 for general guidance on the design of healthcare buildings.

The patient experience

1.4 Diagnostic imaging and interventional radiology can often be an unpleasant and distressing experience for patients and their carers. It is of the utmost importance in designing facilities that the patient experience is taken into account. The emphasis should be on providing a pleasant and comfortable environment for patients at all times.

Inclusions

1.5 The following content is included in this guidance:

- **Section 1** explains the purpose of the guidance and its context in terms of previous guidance, and within legislation and policy guidance. It also introduces the reader to options for procurement strategies;
- **Section 2** introduces the reader to the subject and highlights some of the main issues when designing new diagnostic imaging facilities;
- **Section 3** describes the possible approaches for acquiring, storing and transferring diagnostic images. The past nine years have seen the wide scale introduction of digital imaging modalities and digital technologies including the widespread use of personal computers. Virtually all departments make use of some form of digital image communication and storage, possibly coupled with plain film acquisition. The section discusses and compares the effects on the built environment of both conventional and digital approaches. It also makes some comparison of digital and conventional approaches in the later paragraphs of each section, describing the built environment requirements for each modality;
• **Sections 4 to 13** discuss each of the main imaging modalities in turn, together with associated built environment and design requirements. The order and grouping of the modalities is similar to that represented in Diagram 1. The information for each modality is structured as follows:

 (i) background and introduction;

 (ii) clinical and operational objectives for the modality or equipment, particularly where this has direct impact on the built environment;

 (iii) the patient journey, which reflects the pathway from initial referral to exit from the department;

 (iv) a list of the rooms that should be provided to install the equipment and support the diagnostic imaging procedures. This indicates where sharing facilities between modalities may be possible;

 (v) room and equipment descriptions for the modality. In the majority of cases this incorporates an outline discussion of the options available and how they impact on the built environment;

 (vi) special cases.

Each section makes a clear attempt to link the clinical objectives with the design of the built environment and incorporate any relevant imaging policies and legislation where this is appropriate.

• **Section 14** describes mobile diagnostic imaging services provided in an articulated vehicle. This section contains built environment information pertaining to the support of mobile imaging services. It focuses on MRI, CT and PET, and it also supplies some information on cardiac imaging services. The provision of mobile mammography to support breast screening services is recognised by the authors and the built environment requirements for this service will appear in updated versions of this guidance;

• **Sections 15 and 16** focus on ancillary accommodation for both staff and patients, particularly for those areas that are common between modalities.

1.6 **Appendix 2: Engineering requirements** details specific engineering requirements for each of the modalities. Other appendices demonstrate example plans, schedules of accommodation and a glossary of terms.

1.7 This publication forms the first part of diagnostic imaging and interventional radiology guidance for design and construction of new facilities.

1.8 The second part of the guidance will focus on the holistic hospital planning issues and the effects of differences between primary, secondary and tertiary care. It will also include information on environmental factors, such as those concerned with ionising radiation. Some information on these issues is provided in Part 1, but most of the detail will appear in Part 2.

1.9 The intention is to provide a comprehensive design database for those professionals involved in the provision of new diagnostic imaging services.
Exclusions

1.10 This document does not give guidance on:

- teaching facilities. Where teaching facilities are to be provided, a separate case may need to be made for the cost of any additional accommodation needed for trainee radiologists or radiography students. The Royal College of Radiologists and the Joint Validation Committee of the College of Radiographers and the Council for Professions Supplementary to Medicine should also be consulted at the initial planning stages for any diagnostic imaging facilities where it is envisaged that radiologists and student radiographers/technologists will be undergoing training. However, where the teaching of medical students and radiographers/technologists has an impact on occupancy factors, for example, then this is noted in the text under the individual modalities. The majority of hospitals will be involved in the tuition of healthcare professionals connected with diagnostic imaging at some level, working in conjunction with established academic institutions;

- radiotherapy and oncology treatment facilities, including those with unsealed radioactive sources or substances, external beam radiotherapy and brachytherapy. Further information for this area can be found in SHPN 54: Facilities for Cancer Care Centres. However, the diagnostic imaging facilities required in order to support cancer care initiatives are referenced in this guidance and noted where appropriate.

Context of this guidance

1.11 SHPN 06 is one of three SHPNs that try to demonstrate clear links between the design of the built environment and other factors, such as clinical work, the technology, the regulatory framework and policy. The other Notes provide cardiology and cancer services guidance. Previous documents have tended to focus directly on the built environment with only a small amount of information on the technology, clinical work and relevant policies. Because of the complexity of such projects, it is recognised that successful provision of new diagnostic imaging services requires the wide range of skills of a multidisciplinary team. The new guidance, therefore, is structured to assist a broad range of healthcare professionals in fully contributing to the provision of new diagnostic imaging services, whether this concerns single pieces of equipment in an established department or an entire modern diagnostic imaging department within a new hospital.

1.12 The guidance contains a number of descriptions of clinical procedures that are undertaken in a diagnostic imaging department. The descriptions are directly related to the use of the equipment and how this impacts on patient care. They are included to give the reader some background knowledge and are not intended to be comprehensive. Clinical procedures with a direct impact on the built environment and important to patient care are carefully described and noted.
1.13 There are a number of Acts and Regulations relevant to diagnostic imaging because of the use of ionising radiations, such as in X-ray examinations. Worth noting at this stage are:

- the 1999 Ionising Radiations Regulations, which are principally concerned with the protection of staff working with ionising radiations;
- the 2000 Ionising Radiation (Medical Exposure) Regulations, which are principally aimed at the protection of the patient;
- the 1993/2000 Radioactive Substances Act, which is primarily concerned with the safe use of radioactive substances.

1.14 These Acts and Regulations are supported by codes of practice and guidance notes published by the Health and Safety Executive and the National Radiological Protection Board. The regulatory framework needs to be considered at an early stage of the design of a diagnostic imaging department or the integration of new items of equipment or modalities.

1.15 Policies and changes in healthcare practice are described not only where they are considered to be part of diagnostic imaging, but also where those in other areas may have a direct impact on the provision and location of diagnostic imaging.

1.16 All of the above factors, clinical, policy, regulatory and technological, are integrated into the description of the built environment. This provides:

- detailed room descriptions, supported by appropriate illustrations;
- specialised and general engineering requirements;
- example plans of the different modalities, which include supporting accommodation necessary to provide proper care for the patient.

The provision of an ergonomic built environment to support the staff working in the department is also strongly recognised. This is an important part of this guidance and much of the text is focused on this aspect.

Why is the new guidance required?

1.17 Scottish Hospital Planning Note 06 was published in 1994. Since then the whole area of diagnostic imaging has advanced considerably. The last eight to ten years have seen the introduction of a number of new techniques and the rise of diagnostic imaging machines or modalities, such as MRI and ultrasound, to the point where they are now considered an essential part of providing a modern diagnostic imaging department or service. The medical field of diagnostic imaging is continuing to advance at an almost exponential rate, which is evidenced by the publishing of over 100 clinical and technical journals on the subject of radiology or diagnostic imaging worldwide per month. Clinical innovations and research undertaken in the healthcare practices of North America, Japan and Europe provide the content for these journals. The area of diagnostic imaging is almost continually changing, so designers, architects and
healthcare professionals have a duty to provide a modern adaptable built environment that provides the best quality care for the patient.

1.18 The last eight to ten years have also seen the rise of the use of interventional radiology on a much wider scale, both in tertiary and secondary care, where it now accounts for almost 15% of the procedures undertaken in diagnostic imaging departments throughout the UK. Interventional radiology can be best described as the use of imaging to guide minimally invasive surgical procedures. In some instances, it has replaced some of the equivalent surgical operations, as the techniques involved are considered to put the patient at less risk and provide a faster pathway to an eventual cure.

1.19 Changes have also taken place in the regulatory framework, which has been updated with the new 1999 Ionising Radiations Regulations following the 1996 Euratom Basic Safety Directive and replacing the 1985 Ionising Radiations Regulations. The 1997 Euratom 97/43 directive on patient safety and the use of ionising radiations has been incorporated into the 2000 Ionising Radiation (Medical Exposure) Regulations. These Regulations revoked the Ionising Radiation (Protection of Persons Undergoing Medical Examination or Treatment) Regulations 1988, commonly referred to as the POPUMET Regulations.

1.20 There is an increasing demand for diagnostic imaging and interventional radiology treatment procedures and it is anticipated that this trend will continue. Technological advances and innovations in imaging may produce changes in radiological methods, but it is unlikely that these will significantly affect the increasing need. Diagnostic imaging services now have a greater role in the total management of the patient, involving consultation, diagnostic procedures, discussion and treatment. There is now far greater emphasis on the use of multidisciplinary teams to diagnose and treat patients. A well-designed and planned diagnostic imaging department is essential if patients are to be investigated and treated speedily and efficiently as part of the overall treatment pathway.

1.21 It is now possible to acquire, successfully and reliably, all types of diagnostic images using digital techniques, from simple X-ray examination to more complex examinations. This has been further supported by the development of computer communication, networking and workstation technologies, so that diagnostic images can be relayed from one location to another without the use of X-ray film. The initial costs of undertaking this change in working are considerable, both in terms of staff acceptance, training and procurement of the equipment. For this reason, a number of hospitals have implemented a part-digital approach, rather than choosing to make an immediate transition to a fully digital communications infrastructure. This aspect is discussed in this guidance and compared with the built environment requirements for conventional film processing approaches.
History of previous Health Building and Health Guidance Notes

1.22 This guidance supersedes or encapsulates the following:

- Scottish Hospital Planning Note 6: Radiology department, 1992;
- Health Guidance Note: Magnetic Resonance Imaging, 1997;

Intended audience

1.23 The document is aimed at advising the following healthcare professionals on the options available for designing and providing diagnostic imaging facilities in Health Boards and at primary care level. All of these professionals could be involved in the design process:

- estates and facilities professionals including:
 i) hospital estates managers;
 ii) hospital electrical engineers;
 iii) facilities managers;
 iv) project managers;
 v) hospital estates consultants;
- architects working for and contracted to NHSScotland;
- superintendent and senior radiographers/technologists;
- radiologists;
- clinical physicists;
- GPs and Primary Care Trust/group chief executives;
- general hospital managers, in particular those managing surgery and diagnostics;
- nurses working in the diagnostic imaging department.

1.24 Suppliers and equipment manufacturers may also find this guidance helpful.

Legislative and policy context

Diagnostic imaging policies and guidance

1.25 Advice, guidance notes and publications on good clinical and organisational practice have been produced by the Royal College of Radiologists (RCR) and the Institute of Physics in Engineering and Medicine (IPEM) with direct reference to diagnostic imaging policies. Some of the more pertinent publications, which probably have a direct effect on the design of the built environment, are listed below.
• Making the best use of a department of Clinical Radiology. Guidelines for Doctors: Fourth Edition. This advice is published by the Royal College of Radiologists and provides advice to referring clinicians on the most appropriate examinations and procedures for their patients;

• Retention of X-ray films: Résumé of the issues. This publication, also from the RCR, gives advice to departments on the length of time X-ray films should be stored following the completion of an examination;

• IPEM Report Number 41 contains guidance on the shielding aspects of diagnostic imaging rooms and the type of materials that can be used. Although the guidance is primarily aimed at physicists, it may also form a useful source of information for others;

• Medical and Dental Guidance Notes - a good practical guide on all aspects of ionising radiation protection in the clinical environment - IPEM 2002.

Appendix 3 lists websites of Societies and Institutions publishing further reading.

1.26 The British Institute of Radiology (BIR) also publishes standards and guidance on the provision of diagnostic imaging services. The following publications are probably the most important to those involved in the building and construction of new facilities:

• Radiation Shielding for Diagnostic X-rays – Report of the joint BIR/IPEM working party. The text is primarily aimed at physicists but may be useful to design and construction professionals;

• Justification in Radiation Protection. The title of the guidance is one of the three basic principles of radiation protection established by the ICRP and the principles are embodied in the new Ionising Radiations Regulations 1999.

Key Scottish Executive and NHSScotland policy initiatives

1.27 A number of policies and national frameworks are emerging in acute medical areas such as oncology and cardiology. These provide guidance on the way treatment should be delivered effectively and appropriately to patients diagnosed with these pathologies and describe how diagnostic imaging and interventional radiology services should be configured to best support these.

1.28 In addition, pilot studies are being undertaken in England to investigate the potential of diagnostic screening programmes. Examples include preventing colon cancer, utilising X-ray fluoroscopy facilities, and strokes and using ultrasound imaging.

Legislative requirements

1.29 In SHPN 06, reference is made to provisions and facilities that are controlled by legislation, either in the form of Acts of Parliament or Regulations. Some parts of this legal framework incorporate UK Codes of Practice which are mandatory in their application, whilst others are derived from European Union Directives.
that have been incorporated into UK health and safety legislation. In providing
diagnostic imaging services, NHSScotland has, therefore, a duty to comply with
a considerable body of statutory and other requirements, the majority of which
are mandatory. The considerable legislation, Codes of Practice and guidance
associated with the use of Ionising Radiations are outlined in paragraphs 1.30 to
1.37. For example, all employers are required to register an X-ray generator
with the Health & Safety Executive before making any use of the equipment.

1.30 Many of the current Regulations, Codes of Practice and guidance notes are
derived from scientific evidence and reports published by the Scottish
Environment Protection Agency (SEPA) and the International Commission for
Radiation Protection (ICRP), to which employees of the National Radiological
Protection Board (NRPB) make a significant contribution.

1.31 NHSScotland service providers have, in addition, a duty to comply with a variety
of procedures established by the Scottish Executive Health Department and
other government agencies and departments such as the National Radiological
Protection Board. They should also implement or make alternative
arrangements for compliance with advice and recommendations contained in
non-statutory but Approved Codes of Practice, such as those approved by the
Health and Safety Executive or others with express responsibility for safety.

1.32 Healthcare service providers have a responsibility to consider and take account
of guidance, where appropriate, from a wide range of bodies, including
NHSScotland, learned organisations and European and international groups.

1.33 Healthcare practices undertaking any form of procedure involving ionising
radiation will need to appoint a Radiation Protection Advisor (RPA), who may be
internal or external to the organisation. A Radiation Protection Supervisor (RPS)
is also required to assist in the implementation of advice from the RPA. Their
roles and responsibilities are briefly described below.

1.34 The RPA is usually a physicist and holds certificates of competence in radiation
protection. He or she has a duty:

- to ensure that Health Boards are made fully aware of their responsibilities
 under current legislation and guidance notes;

- to provide up-to-date advice on ionising radiation and, in some cases, non-
 ionising radiation.

The RPA is also responsible for providing advice on safe working and visiting
arrangements for staff and patients and undertaking risk assessments in each
of the diagnostic imaging rooms and associated areas. Estates professionals
can call on the RPA for general and specific design advice on new and
upgraded diagnostic imaging facilities. RPAs may use the most up-to-date
scientific evidence available, which may be more stringent than existing
legislation. Virtually all suppliers of diagnostic imaging equipment will seek RPA
approval before installing their equipment in new or upgraded facilities or
starting any pre-installation works.

Version 1.0: March 2004 Page 11 of 340
© NHSScotland Property and Environment Forum
1.35 The RPS, who will usually be a senior radiographer/technologist or departmental manager, will normally work with the RPA in the implementation of their advice and ensure safe and effective day-to-day running of the department or facility. Each department will have a designated RPS, who will work directly for the hospital. They will also be responsible for ensuring that all documentation such as maintenance reports and QA checks are kept in an orderly manner and up-to-date. The advice of the RPS must be sought early in the design stage, as they will be able to provide advice on ergonomics, occupancy factors and certain elements of radiation protection that may have an impact on the design, e.g. for wall and floor slab thickness and density.

1.36 This SHPN takes account, as far as is possible, of all statutory and other requirements and guidance and current scientific thinking in force or available at the time of publication. Health Boards and their consultants are reminded, however, that their overriding duty is to ensure compliance with all relevant statutory instruments and established procedures. It is also their responsibility to ensure that due weight and consideration is given to relevant guidance.

Acts and Regulations

1.37 Items of advice contained within this document in support of Acts or Regulations are clearly indicated. With respect to ionising radiation there are currently four Acts and Regulations which will probably have a direct impact on the design and planning of a diagnostic imaging and interventional radiology department. These are:

- the 1999 Ionising Radiations Regulations;
- the Ionising Radiation (Medical Exposure) Regulations 2000;
- the 1993/2000 Radioactive Substances Act;
- Regulations on Transportation of Radioactive Substances.

Summary

1.38 The effect of legislation, Codes of Practice and guidance notes upon each element of facility design or engineering dealt with within this publication is clearly explained.

1.39 It should be noted that there are currently no Acts or Regulations in place to cover non-ionising radiation. The use of non-ionising radiation in medical practice should adhere to the guidance notes produced by government agencies and the National Radiological Protection Board.

1.40 A list of the majority of Regulations, statutory requirements and guidance notes in relation to diagnostic imaging equipment is given in the References Section.

1.41 A glossary of terms and a list of abbreviations used throughout this SHPN are included in Appendix 3.
2. Diagnostic imaging and interventional radiology services

General

2.1 The primary role of diagnostic imaging services is to support and serve other departments in a hospital or healthcare practice, for example a general practice surgery, in providing diagnostics or treatment. Where imaging is used to guide a treatment procedure, this is referred to as interventional radiology.

2.2 Radiology or diagnostic imaging in its simplest sense is the use of X-rays and radioactive substances in the diagnosis and treatment of disease. In recent years this definition has expanded to include the use of ultrasound and MRI in the diagnostic and treatment process. Neither of these techniques makes use of ionising radiation or X-rays, but does make use of what is collectively known as non-ionising radiation. Diagnostic imaging is used in the identification of disease or, in some cases, to exclude disease. It is commonly used as part of a range of diagnostic tests, including the assessment of the patient's symptoms, to form a diagnosis. Diagnostic imaging can provide images of human body structures such as organs and bones (anatomy) or of human body functions commonly referred to as physiology, or can be used as part of interventional radiology procedures.

2.3 The majority of diagnostic imaging procedures and examinations are still undertaken in the diagnostic imaging department. However, it may be appropriate to provide diagnostic imaging facilities in other areas of a Health Board or hospital, where this matches the expertise available, and does not conflict with accepted clinical practice and policies, for example catheterisation laboratories and A&E departments.

2.4 Patients, either in-patients or out-patients, will always attend for diagnostic imaging services for transient periods which may be quite brief. Exceptionally they may remain in a department for more than 8–10 hours continuously, where a sequence of examinations is required. Patients may attend for examinations and procedures on two consecutive days.

2.5 For many years there has been an increasing demand for diagnostic imaging and interventional radiology treatment procedures and it is anticipated that this trend will continue in the future with further technological advances and innovations in imaging. Diagnostic imaging services today have a greater role in the total management of the patient, involving consultation, diagnostic procedures, discussion and treatment. There is now greater emphasis on the use of multidisciplinary teams to diagnose and treat patients. A well-designed and planned diagnostic imaging department is essential if patients are to be investigated and treated speedily and efficiently as part of the overall treatment pathway.
2.6 Effective designing and planning depends on full, early and continuing consultation with the future users of the facilities. Allowance should be made for possible future development of the facility. Rooms should be planned for replacement of the equipment and not ‘shrink-wrapped’ to suit the sizes and installation requirements of individual items of equipment. Designers should ensure that all spaces allow for the required activity and must appreciate the infection control implications of overcrowding clinical areas. Equipment replacement cycles may be between five and ten years depending on modality. In addition, future changes in practice, such as an increased use of ultrasound and the number of interventional procedures undertaken, will have planning implications for the space provision for nursing preparation and support.

What makes up modern diagnostic imaging?

2.7 Diagnostic imaging is made up of a range of imaging modalities. Full descriptions of the modalities are given in later sections. Construction, layout and room height requirements will vary significantly between modalities, for example in the requirements for X-ray protection. The following is a list of modalities:

- general X-ray units including those facilities required for Accident & Emergency;
- mobile X-ray units;
- general fluoroscopy and fluorography apparatus for interventional and diagnostic imaging procedures;
- mobile image intensifiers or C-arm devices;
- specialised fluoroscopic and angiographic facilities;
- radionuclide imaging;
- Positron Emission Tomography (PET);
- ultrasound imaging;
- X-ray mammography;
- Computed Tomography (CT);
- Magnetic Resonance Imaging (MRI);
- dental X-ray units, this modality will be described in future updates of this guidance;
- mobile diagnostic imaging services provided in an articulated vehicle.

Virtually all of the modalities described above can be transported using, or permanently installed into, mobile vehicles. In some cases, for example MRI and CT units, this requires a large articulated vehicle. A number of companies provide mobile imaging services in the UK.

2.8 Conventional X-ray imaging relies on analogue X-ray photographic film images. All the imaging modalities, however, can now be configured to produce images
digitally, as digital data, and the inherent design of some modalities requires the acquisition of digital data, for example CT and MRI. It is now possible to capture the data, store it digitally and transmit the information to other parts of a hospital or within the actual department itself. As a simple example, this would allow the same images to be viewed simultaneously and discussed by two clinicians in differing locations, which is usually not possible with conventional X-ray film acquisition. The digital networking infrastructure necessary to meet this operational requirement is called a Picture Archive and Communications System (PACS). The implementation of such a network can have real patient care benefits coupled with improved staff working conditions. The use of this technology also has profound implications for the design of the built environment. This will be discussed in a future PACS supplement.

2.9 PACS is not prevalent in most hospitals but the majority of diagnostic imaging departments do support some basic digital network communication between modalities and localised archives are becoming more common. This document supports alternatives to both conventional and digital imaging approaches and details its effect on design and the built environment.

2.10 Telemedicine, or more specifically, teleradiology, will be described in a future PACS supplement.

2.11 Bone densitometry techniques are considered to be beyond the scope of this guidance at this time, but a description of the built environment supporting this modality will appear in future updates.

Organisation of the imaging modalities

2.12 Modern diagnostic imaging can be further subdivided into a number of areas and this may reflect the overall organisation of equipment and imaging suites in a new or refurbished department. In essence, diagnostic imaging can be broken into small clusters of imaging modalities, as illustrated in Diagram 1.

2.13 Diagram 1 demonstrates the main components that make up a diagnostic imaging and interventional radiology department. Not every room is represented in this schematic diagram, but it does show how some modalities and multiple suites can be planned close together, bringing benefits in patient care, efficient use of space by sharing some of the supporting rooms, good clinical communication and expertise sharing. The modalities circled with a dotted line are those that may be developed and used at tertiary level or specialist centres. This guidance is broken into these areas demonstrated in the diagram. The number of suites shown for each modality is for indicative purposes only and should not be used as a definitive guide. The number of suites actually required will depend on several other factors. The distances between the separate modalities and the general circulation areas should not be used in planning terms.

2.14 **Diagram 2** shows how the diagnostic imaging and interventional radiology department could be planned to be adjacent to other areas of a hospital. A dotted line indicates a close but not essential relationship to another department or area.
2.15 The relationship with the Accident and Emergency Department will depend on whether additional dedicated trauma imaging facilities are provided within the A&E Department. This may be necessary in certain contexts in order to provide good patient care and access to diagnostic imaging in emergency situations. A&E Departments require to be near to CT and general X-ray imaging.

2.16 There should also be a good planning relationship between the diagnostic imaging and interventional radiology department and out-patient clinics, particularly those involved in treating orthopaedic patients, as orthopaedic related examinations may make up to three-fifths of the total examinations undertaken.

2.17 Antenatal clinics should also be located close to the diagnostic imaging and interventional radiology department if the department is undertaking antenatal diagnostic ultrasound examinations. Planners should ensure that the radionuclide and PET imaging clusters are not close to the ultrasound suite of rooms.

2.18 The department should be near to the main entrance of the hospital and access to the department should be directly off the main hospital street on the ground floor of the hospital. This will ensure that out-patients and GP patients can locate the department relatively easily and facilitate the transfer of equipment to the department. Wide corridors and doors should be provided between the main entrance and the diagnostic imaging facilities to allow for the transfer of equipment. Since many components of major imaging systems are extremely heavy, routes through the hospital and the department, used for the transfer of equipment during installation and replacement, should be designated as such and floors reinforced to support the increased loading.

2.19 The pharmacy department support will include the provision of sedative drugs and, possibly, contrast media. Radioactive substances will be required for some procedures and these will be supplied by a radiopharmacy, which may form part of a larger pharmacy department, or be provided separately as part of the diagnostic imaging department.

2.20 Ward areas may be relatively distant from the diagnostic imaging department. Ideally, the planning of circulation routes should allow for separate access by in-patients, who may be on beds or on trolleys.
Diagram 1: Major components of a Diagnostic Imaging and Interventional Radiology Unit, together with suggested clustering

Please note that not all rooms are shown here and this should only be used as introductory planning material. The numbers of rooms indicated should not be used for planning purposes.
Diagram 2: The outline relationship of the Diagnostic Imaging Unit to other areas of a hospital

General patient journey

2.21 In a hospital, diagnostic investigations and procedures most appropriate to providing a diagnosis are selected by a clinician, often in consultation with a radiologist. Diagnostic imaging departments carry out investigations and report results as quickly as is reasonably practicable. In an acute general hospital, referrals are accepted from other departments in the same hospital, from other hospitals and from primary health care and community health team doctors.

2.22 Patients will usually be referred to diagnostic imaging for an investigation by a clinician, who is required to provide a request form for the examination or procedure. The request form will either accompany the patient or be sent prior to their attendance. The referring clinician should provide full patient details including clinical indications for the examination. Departments will usually accept referrals only when all the required information has been provided. One exception to this policy is referral from Accident & Emergency, where some patients may require immediate access to diagnostic services.

2.23 Out-patients may be referred directly by their GP for a diagnostic imaging examination or procedure. Patients attending out-patient clinics may be referred directly for diagnostic imaging examinations, for example the referral of patients for X-ray examinations during fracture clinics. Alternatively, patients may be sent for a diagnostic imaging examination after a medical appointment with a consultant or clinical specialist. Once the clinician has received the report and had the opportunity to discuss the case further with medical colleagues, the patient may then make another appointment to discuss the results.
2.24 In-patients may be transferred from the wards on beds or trolleys for diagnostic imaging examinations and procedures. In some instances, the examinations may be undertaken in the ward area using mobile units. The majority of hospitals have clinical policies which require patients to be transferred to the fixed or installed units wherever this is deemed clinically appropriate.

2.25 Where interventional treatment or imaging procedures are undertaken, patients may attend either as in-patients, or on a day case basis. In the latter case, they are admitted early in the morning for consent and preparation. The procedure is undertaken mid morning to early afternoon and then the patient is allowed time to recover before being sent home. If complications develop, the patient will be admitted as an in-patient. In the majority of cases where patients undergo interventional treatment, they are admitted on the day of the procedure and remain as in-patients for one or two nights afterwards, to allow for recovery and check for complications.

2.26 Full descriptions of patient journeys are provided in the text below for each of the modalities.

Professional staff groups and volunteers

2.27 The range of staff groups needed to support modern diagnostic imaging and interventional radiology has risen rapidly as the services provided have diversified and number of available techniques increased.

2.28 In modern diagnostic facilities the following staff groups may be present:

- radiologists, including consultants, and specialist registrars;
- radiographers/technologists working in all areas of a department;
- imaging room technicians and radiographer assistants;
- clinical physicists;
- clerical and administrative staff, who may, for example, be involved in maintaining the film library or receiving out-patients upon arrival;
- nurses, who may for example be assisting with interventional or barium procedures and caring for patients in specialised recovery areas;
- volunteers who may be assisting with the care of patients or helping with administrative duties such as moving films around the department or the hospital;
- radiography helpers.

2.29 Following recent closures of schools of radiography and the introduction of three and four year radiography degrees, there appears to be a shortage of qualified radiographers/technologists within the UK. This may see the introduction of imaging technicians, who will work under the supervision of radiographers/technologists and carry out relatively basic imaging techniques such as chest X-rays, and plain film extremity examinations. Such individuals
will not be qualified to work in more specialised areas such as angiography, fluoroscopy, and CT. This may have the effect of increasing overall team sizes, thereby increasing some accommodation needs.

2.30 The role of senior radiographers/technologists in particular has also been changed over the last few years, where some members of staff have taken on roles traditionally undertaken only by radiologists. This primarily relates to conduct of barium X-ray examinations, which, in the majority of facilities, are undertaken by senior radiographers/technologists. In some cases, where training has been provided, radiographers/technologists are reading and interpreting X-ray films acquired from patients attending A&E outside core working hours. The purpose of this is to speed up the time taken to report the images acquired and thus improve patient care. These changes will have an impact on the built environment and provision of associated facilities such as offices.
3. Imaging approach

Introduction

3.1 This section reviews a number of potential methods of data collection and their impact on the built environment. It is broken down into three parts as outlined below.

3.2 The first part briefly reviews the methods of procurement for image processing services.

3.3 The second part describes in general the different methods for acquiring the images in a diagnostic imaging and interventional radiology department.

3.4 The third part describes how the acquired images are collated, sorted, distributed and eventually stored.

3.5 The section is designed to encompass all the imaging modalities listed in paragraph 2.7. There are three approaches to acquiring and distributing the images and these are briefly described below:

- **Fully conventional approach**: images are captured and processed using conventional X-ray film. The images are acquired in general X-ray rooms, mammography and during some parts of the examinations in conventional and remote fluoroscopy systems. The film will require processing in shared, almost adjacent, areas. The facilities and equipment to undertake this approach are outlined, together with any special built environment implications. The facilities required for distributing the X-ray films for reporting, review and archiving are detailed. These require a large allocation of space within the hospital or department/facility;

- **Part digital approach**: the data acquired from the modality is inherently digital. This is particularly true for images acquired using MRI, CT, angiography and fluoroscopy. If the hospital has yet to develop the capacity to transmit the images digitally to other parts of the hospital or department for review and reporting, the data will need to be presented on film and this is achieved by the use of laser printing devices. Once the images have been reported they will require sorting, collating and distributing to other parts of the hospital as for conventional acquisition and processing techniques. In this approach the department may maintain a copy of the images digitally on a local archive, for example CD-ROM, and the facilities to support this are also described;

- **Fully digital approach**: images will be acquired digitally by both CR and DR, including those from general X-ray rooms, stored using large digital CD-ROM archives and accessed by clinicians working anywhere in the hospital via a high speed network. This is a very basic description of a Picture Archive and Communication System (PACS), which would form part of an
integrated hospital networking strategy. In this instance there may be no requirement for film sorting, collating and distribution areas. In practice, the fully digital approach is difficult to achieve, as not all the modalities can acquire digital images of sufficient clinical quality and there may be times when the hospital still has to transfer images to a film-based format, particularly when distributing them to nearby hospitals. In this instance, space needs to be allocated for machine rooms housing the large CD-ROM archives. There will be a much more detailed description in the future PACS supplement.

3.6 The approach used to acquire the images will have an impact on how they are viewed and reported by clinicians and radiologists within the department. The methods and their effect on the accommodation required are described in the last part of this section.

3.7 The section is summarised by three workflow patterns (see Figures 3.10 - 3.12), which directly compare the three approaches.

3.8 In general, diagnostic imaging departments are gradually moving towards a fully digital solution for the storage and distribution of diagnostic images. This trend is likely to reduce future dependence on conventional X-ray film development and storage and should be taken into account when planning projects. However, departments making the transition from film-based to digital radiology will still need to provide facilities to cater for both. They will require to allow for the possibility that departments may still need to view old films, or revert back to conventional imaging during breakdowns, even when the transition has been completed.

Procurement of film processing services

3.9 Project teams should investigate capital and partnering agreements with potential suppliers when tendering for recording media. Different manufacturers are likely to have different requirements in respect of space and services, which will need to be taken into account at an early stage of a project's development. The detailed design layouts should be sufficiently adaptable to facilitate later upgrading or replacement of the conventional processing equipment by alternative suppliers or by digital processing equipment.

Procurement strategies

3.10 The following alternative procurement strategies can be considered when seeking tenders for the acquisition of either conventional or digital imaging equipment:

- capital procurement of the equipment and recording media, such as film cassettes, from revenue budgets;
- an operating lease arrangement, where the capital equipment remains in ownership of the supplier. This is the most favoured of the options under a PPP/PFI agreement. The Health Board pays rent to the supplier of the
equipment or pays higher rates for consumables such as film or, in the case of computed radiography, a small fee for each image acquired. In the latter cases, the supplier usually specifies minimum quantities over a fixed term contract, in order to cover the loan of the equipment. This arrangement would usually be part of a partnership agreement, where the Health Board only purchases image recording consumables from a single company and, in return, the supplier would accept most of the risk on the equipment, which cannot usually be re-sold.

3.11 The last examples of operating and partnership arrangements can be extended to upgrade equipment periodically and assist in the transition from conventional to digital imaging acquisition methods and can include changes to the building design of the department.

Image acquisition – conventional X-ray film processing

Accommodation required: the film processing and viewing area

3.12 The film processing and viewing area is typically a busy centre of activity for diagnostic imaging staff. In addition to the activities described below, it acts as an important focus for informal staff contact and professional review.

3.13 Activities will include:

- receipt of the request forms from referring clinicians. These determine the imaging process. The examination or procedure performed will depend on the details provided in the request form;
- processing of the X-ray films by automatic processors, which require loading and unloading;
- initial viewing and checking of films at a panel of wall-mounted X-ray viewers. Radiographers/technologists will check for technical quality and anatomical coverage;
- checking of patient details at computer workstations connected to a computer/network-based Radiology Information System (RIS);
- transcription of the patient details to the completed X-ray films;
- sorting and collation of films, usually by administrative staff for clinical reporting and interpretation by radiologists elsewhere in the department;
- in some instances, identification of films by the radiographer/technologist for close inspection or attention, possibly using a red dot system. This usually occurs where Accident & Emergency films are processed outside core working hours.
Number of film processors required

3.14 Accommodation requirements will be determined by the number of film processors needed. As a general guide, a large diagnostic imaging facility should have at least two automatic daylight film processors. To calculate additional requirements, the following factors should be assessed:

- the maximum number of images per hour acquired from associated general X-ray imaging rooms;
- the maximum number of films that can be processed per hour on a single daylight automatic processing unit. The majority of film processing is carried out using 45, 60 and 90 second processing cycles for all X-ray films;
- whether mammography films need to be processed using the same automatic film processors. This may be appropriate if low numbers of mammography films are produced. There are problems in maintaining the developing and fixing chemistry if a dedicated unit is used to process small number of films;
- spare capacity requirements for breakdowns, servicing, general maintenance and peaks in demand. To assess needs, project teams should examine the guaranteed uptime figures quoted by the manufacturer;
- the relative numbers of conventional and remote fluoroscopy rooms and whether the fluoroscopy equipment can produce images digitally and send these to a digital archive or a laser imager for printing;
- local requirements for the processing of OPG and panoramic dental films, if such facilities are provided in the department.

3.15 If film processing has to be accomplished 100% of the time over 24 hours, seven days a week in order to support A&E applications, strategies should be in place to avoid single points of mechanical failure and loss of service. Breakdowns and servicing may prevent operation of the film processor for between five and ten working days per year.

3.16 For small satellite departments, possibly serving one, or at most two, general X-ray rooms, a single automatic processor should be sufficient. If there is limited space available this could be located in a darkroom.

Siting of the film processors and processing areas

3.17 The occupancy level of a processing area will vary dramatically according to the time of day and the number of adjacent imaging rooms. For example, a processing area serving two general X-ray rooms will need to accommodate transiently up to six radiographers/technologists, nurses and radiologists and other clinicians at peak times.

3.18 The siting of the film processors must be considered in the context of local requirements and workload demands and should be arranged so as to reduce staff movement to a minimum. For example, a processing area may be located centrally to serve two or more adjacent general X-ray rooms. The overall policy should be such that alternative processing facilities are always available within
3.19 Processing areas should be sited adjacent to the staff entrances of the X-ray rooms served. Within a larger diagnostic imaging department, the provision of two distinct processing areas, to serve geographically separate groups of X-ray rooms, should be considered. For example, one processing area could serve a group of general and A&E X-ray rooms, and a separate processing area could serve fluoroscopic and other general X-ray rooms.

3.20 A separate processing area may be required to serve a cluster of dedicated A&E department, general X-ray or other diagnostic imaging rooms. This may incorporate two or more automatic daylight film processors and laser printing equipment.

3.21 Example plans of processing areas and their relationship with imaging rooms are shown in Appendix 1.

Other considerations affecting processing area accommodation requirements

3.22 A processing area may also need to accommodate laser printing facilities for generating hard copy film images from digital imaging modalities. If several digitally-based imaging modalities require hard copy printing, a server will be required to network the modalities, and sequence and control the printing of images by a wet or dry laser imager. A description of this equipment is contained in Section 3: Image acquisition – part-digital approaches.

3.23 In addition to general worktop, storage space and appropriately positioned X-ray film viewers, purpose-adapted low-level open units with vertical dividers will be required for the local storage of film cassettes of various sizes. Space may be needed for trolleys used to transfer completed films and patient records.

3.24 The processing and viewing area should be provided with a large sink for the routine cleaning of processor rollers. The size of the sink should be confirmed with the processor manufacturer.

Accommodation required: darkroom facilities

3.25 Although the use of daylight automatic processing is now commonplace, it is recommended that darkroom facilities should continue to be provided. These facilities will be used for loading of film magazines, film copying and processing of non-standard sizes of film.

3.26 The darkroom facilities can also be used to provide an automatic darkroom processor, which can serve as a back-up function to the daylight automatic processors, during periods of downtime or when the daylight processor has problems unloading the cassette. In this case, the radiographer/technologist or assistant will unload the film from the cassette and place this in the automatic processor for developing. The cassette will be manually reloaded using film stored in the darkroom.
3.27 One arrangement is for a daylight automatic film processor to be installed, backing on to a small adjacent darkroom and built into the partition using light-tight construction. This arrangement allows non-standard film sizes to be manually fed from behind into the automatic processor, with the ‘feed-in’ side in a safe-lit area and the ‘output’ end in the adjacent film processing and viewing area.

3.28 An alternative arrangement is to have a dedicated darkroom processor positioned so that the ‘feed-in’ end is in the safe-lit area and the ‘output’ end in the adjacent processing and viewing area. In this situation, a larger darkroom will be required and there will be no facilities for the automatic unloading of cassettes.

3.29 The design of the darkroom may have to allow for desktop specialised processing requirements for intra-oral and bitewing dental films. These cannot usually be processed by standard automatic film processors used for other more conventional X-ray film.

3.30 Alternatively, in larger hospitals, where there is a high throughput of dental films, a dedicated floor standing unit located in a dark room may be required, in order that the films can be processed. Additional space will need to be allocated for this purpose.

3.31 When the door is closed, magazines and cassettes may be passed into the darkroom via a lockable light tight cassette hatch. A cassette hatch, where provided, should be fitted with interlocks to prevent white light entering through the hatch when safe-light conditions are required.

3.32 The darkroom will require safe lighting, coupled to an exterior warning light, a white light, worktop space for unloading and loading cassettes and for film QA tests, and cupboards for general storage.

3.33 A free-standing or worktop-mounted film copier is likely to be required and should also be located in the darkroom. The maximum size of a floor-mounted unit is approximately 1000 x 700 x 700mm.

3.34 A light tight under-worktop film storage hopper may be needed, depending on operational requirements. The extent of such storage will also depend on local working practices and the use of digital modalities such as Computed Radiology (CR) and Direct Radiology (DR). Where provided, procedures should be put in place to prevent the film in the hopper becoming exposed to white light. The storage unit should not face the entrance door to the dark room.

3.35 The darkroom door should be lockable and must totally exclude any ambient light from adjacent areas.

3.36 Extract ventilation is essential to provide negative air pressure in the dark room in order to reduce possible chemical contamination risks to the imaging staff. As an indication, between 12 and 15 air changes per hour should be provided. Refer to Appendix 2: Engineering requirements.

3.37 The darkroom should be located directly adjacent to the film processing area.
Accommodation required: unused film and chemical store

3.38 A dedicated room within the diagnostic imaging department should be provided for the secure storage of unused film and of processing chemicals, not necessarily adjacent to the film and processing area. Shelving should be provided in various depths to suit the sizes of film in use; the deepest shelf required is likely to be 450mm. The store should be sited away from X-ray imaging rooms or shielded from radiation and should be in a location with a ventilated and cool environment. Film storage provision should accommodate enough film for a maximum use of six to eight weeks, as film older than this may be susceptible to fogging. The weight of the film to be stored should be taken into account in the design and positioning of shelving. Natural daylight should be excluded from this area.

3.39 It is customary for departments to keep a four week supply of film but contingency planning should allow a department to keep film for six to eight weeks, depending on operational policies.

3.40 Developing and fixing chemicals, typically up to 100 litres, should be accommodated on low level shelving or appropriate open floor space.

3.41 The temperature and environmental conditions, particularly humidity within the film store, should be kept within tolerances in accordance with film supplier recommendations.

Conventional film processing equipment

Films, cassettes and film handling

3.42 Films used in radiography consist of a base coated on both sides with an emulsion sensitive both to X-rays and to light. To enhance the effect of the X-rays, the sheet of X-ray film is held in close contact between two surfaces known as intensifying screens. These fluoresce when exposed to X-rays, and the photographic emulsion is thereby exposed to both light and X-rays.

3.43 The intensifying screens are held with the film in a re-usable container known as a cassette. Films and cassettes are produced in a range of standard sizes; the largest cassettes in common use hold films of 35cm x 43cm.

3.44 The most common way in which films are placed in position for exposure is by first loading each film into a light-tight cassette. Packs of unexposed films are taken from the unused film store and loaded into the automatic processing units or film loaders using magazines. Depending on the particular processing unit, it may be necessary for film magazines to be loaded in a darkroom prior to transfer to the automatic film processor.

3.45 The automatic processor or film loader will place individual films into cassettes, ready for use in the imaging rooms. After exposure, the cassettes are returned to the automatic processor where the films are automatically unloaded from the cassettes and chemically processed ready for viewing.
3.46 At all times before the completion of processing, films must be protected from exposure to light and from exposure to irradiation. Depending on local working practices, unexposed cassettes may also be held ready for use within the shielded area of the X-ray room or within the processing area.

3.47 Each film must be marked with particulars of the patient’s identification, normally taken from request forms, or the hospital’s RIS. To do this, a patients' records terminal is required in the processing and viewing area. In order to minimise the chances of error, marking should be done before the film leaves the care of the radiographer/technologist.

3.48 The films are usually marked by a photographic method while still in the cassette following exposure but prior to processing. This is provided for in the construction of the cassette. This involves the use of a small actinic marker device, usually located separately in the processing area. An indicative size for such a marker device is approximately 400 x 400 x 400mm, and the unit should be installed on a worktop close to the film processor.

3.49 Alternatively, in some systems, the marking of patient details on the cassette may be carried out by the film processing unit itself, although a separate actinic marker unit may still be required for back-up purposes.

Daylight automatic film processing systems

3.50 Virtually all sizes of X-ray films can be processed using daylight automatic processing systems. Daylight automatic processing and film handling is so called because it can be undertaken in areas of natural daylight or artificial light by the use of light-proof film handling devices. A number of commercial daylight processing systems are available, with differing arrangements for re-loading and unloading cassettes. Most commonly, the unloading and reloading of the film cassettes, as well as the processing of film, are all undertaken in the one integrated floor standing unit. In this case, the radiographer/technologist will place the cassette in the unit, the exposed film will be processed and the cassette returned to the radiographer/technologist, loaded with unexposed X-ray film. Integrated processors can handle the majority of film sizes used in a modern department. Unexposed X-ray film is loaded into the processor by the use of magazines and this process is described above.

3.51 An indicative size for an integrated automatic processor is 2000 x 1000 x 1000mm (H x W x D). Manufacturers should be consulted for more specific detail. The service requirements for integrated and non-integrated film processors are outlined in the section below. The automatic processor will be able to handle a wide range of standard film cassette sizes, and special adaptations may be made for the processing of other sizes of film.

3.52 Alternatively, the reloading of cassettes may be separated from the other processing functions. This is particularly advantageous for handling large numbers of films quickly, for example in separate A&E diagnostic departments. The film loaders are typically wall and floor-mounted, with an indicative size of 1800 x 600 x 250mm (H x W x D) and a separate unit may be required for each film size. A separate daylight film processor will continue to be used but the
footprint area of this processor will be similar to the integrated unit described above. This has far reaching implications for the design of the processing area, to ensure both an efficient workflow and to make sure that loaded and unloaded cassettes do not become confused, resulting in empty cassettes being used for patient examinations (see Figure 3.1). It should be noted that, with improvements in the speed of integrated units described above and the emergence of digital technologies, this approach is becoming less common.

3.53 In either case, project teams should assess the possible requirement for safe lighting, to allow for the retrieval of films in the event of breakdown of the automatic film processor.

3.54 The processing and viewing area should be provided with a large sink for the routine cleaning of processor rollers; the size of the sink should be confirmed with the processor manufacturer.

Supply of chemicals to automatic processors

3.55 Normally, separate automatic chemical mixers are used which will open and mix packs of chemicals as required and give warning when further supplies are needed. These avoid the need for direct contact with the chemicals, reducing the risk of the technicians being splashed or inhaling vapours. Such mixers can serve one or more automatic film processors or wet laser imaging equipment within the same area or adjacent areas.

3.56 Automatic chemical mixers are typically floor standing; indicative dimensions are 1000 x 700 x 600mm. Proposed suppliers should be consulted for exact sizes. Mixers are typically located close to the automatic film processors, and require piped connection. Appendix 2: Engineering requirements provides further details for chemical mixers and film processors.

3.57 Consideration should also be given to the possible recycling of fixer solutions.

Silver recovery

3.58 Refer to Appendix 2: Engineering requirements.

Image acquisition – part-digital approaches

Conventional film processing with a digital storage option

3.59 At least one of the major photographic suppliers in the UK manufactures a single, integrated, automatic daylight film processor with a digitiser and digital storage device. The films are processed using an automatic processor as described above, but once processed, the films are digitised and the digital data stored on an associated optical CD-ROM disk archive. At the end of the process, the department still has a hard copy film record of the diagnostic investigation, but has also acquired a digital version. This process has the advantage that if films are mislaid when sent to the wards or other clinicians for review, they can readily be re-printed from the digital archive via a separate
laser imager. One disadvantage is that the image quality of the digital copies of mammograms acquired using these systems may not be appropriate for reporting purposes.

3.60 If the department has future plans to set up some form of PACS, this may form an appropriate intermediate step between conventional and digital technologies. A relatively dust-free operation is required for the operation of the digitiser, and room ventilation should be designed accordingly.

3.61 The digitiser is integrated with the actual processing unit but, for security reasons, it is customary to house the archive in another location within the diagnostic imaging department of the facility.

3.62 The combined film processors and digitisers are usually slightly larger in footprint area than the daylight automatic film processors and thus have greater space requirements. The throughput may not be as fast as images processed on a stand-alone daylight processor.

3.63 In all cases, more than one processor may be required in order to meet the processing requirements at times of high demand and to cover breakdowns and planned maintenance. Ideally, this provision should take the form of two combined digital/processing units. It may be acceptable, as an interim measure, to combine one conventional daylight processor with one film processor/digitiser unit.

Other part-digital approaches

3.64 Computed Radiology (CR) and Direct Radiology (DR) offer alternative methods of data acquisition from the conventional approach described in the paragraphs above. Both CR and DR can be used as a fully digital or part-digital approach, and are described in more detail below. (See paragraphs 3.77 - 3.99.)

3.65 Other part-digital approaches occur where digital image data, acquired using modalities such as CT, MRI and angiography, is converted to hard copy film. These modalities are also appropriate for a fully digital approach, where infrastructure permits.
Figure 3.1: Example of a conventional film processing unit for use in a darkroom

Image reproduced by courtesy of Fujifilm

Additional notes:
Wash water requirements: approximately 3 litres/gallon during processing at 5°C or higher.
Electrical requirements: 200–240V AC single phase clean supply up to 30A 200–240V AC three-phase at 10A 380/400/415 AC three-phase, Y+N, 10A.
Weight: 150kg without solutions 180kg with solutions.
(Data will vary between manufacturers and should be checked before installation.)
Figure 3.2: An example of chemical mixing device

Image reproduced by courtesy of Fujifilm

Additional notes:
- Power requirements: standard single phase 240V clean supply.
- Water supply: approximately 4 litres/minute at a pressure of approximately 8 kg/cm³.
- Temperature between 5 and 30°C
- Drain: approximately 50mm within 500mm of the mixer.
- Ventilation: adequate ventilation for the room must be provided of the order of 10–15 air changes per hour.
- Weight: up to 100kg fully chemicalised.
- Service access: at least 600mm to the front and one side of the unit. Allow approximately 20cm to the rear of the unit. This may vary between manufacturers.
Equipment required for part-digital approaches

‘Dry’ laser printers

3.66 These devices form hard copies of digital image data from modalities such as MRI, CT and CR. Although the composition of the film used is different from that used in conventional X-ray film processing, the resultant images are similar in appearance. These devices do not use developing and fixing chemicals and thus have no requirement for water supplies, chemical mixer units and waste drainage or specialised ventilation. Only an electrical supply is required. There are no specific room requirements for the siting of dry laser printers, except that some may require a UPS or a 30A supply and the ambient room temperature and relative humidity values should not exceed the manufacturers' tolerance values. Exceeding the tolerance values may increase the frequency of breakdown and repair. Provided these criteria can be met, they can be located in a number of areas to suit operational and workflow requirements.

3.67 There are two typical sizes of dry laser printers currently available. One is a floor standing type for printing 17” x 14” and 14” x 11” films. Its footprint is approximately 1500 x 800 x 800mm (H x W x D). A smaller unit, which, because of its small size is customarily mounted on a worktop or bench, would usually be limited to printing 10” x 8” or, in some cases, 14” x 11” films.

3.68 Dry laser printers used in combination with CR need to be conveniently accessible from general and conventional/remote fluorographic X-ray diagnostic imaging rooms. They can also be located in control areas for CT and MRI or, in some cases, in ultrasound examination rooms. In this context, the waste heat output from the dry laser printer should be taken into consideration.

3.69 Storage space for unused film, which is similar in a number of respects to conventional X-ray film, should be sufficient for a maximum of six to eight weeks supply. Film for dry laser printers kept longer than this period may start to degrade. No storage for chemicals is required for the dry printing systems. As with conventional X-ray film, dry laser printing film should be stored in conditions that are within manufacturers’ tolerances and must not be exposed to light or X-ray radiation.

3.70 Dry and wet laser printers may be used to serve a number of modalities via a separate printing network. An additional server may need to be located to act as a print spooler within the department or facility and can usually be connected to a maximum of two dry laser printers. It does not necessarily have to be located close to the laser printers, but this can be operationally advantageous when diagnosing faults and maintaining the printing network. The print server can be a significant single point of failure and should therefore be fitted with a UPS device to protect it from spikes and surges in the local power supply.

3.71 The majority of modalities can be procured with a digital interface for connection with a laser imager, but there are still one or two manufacturers that provide an analogue output. In order to convert to a format which can be understood by a digital dry laser printer the output has to go through analogue to digital conversion which is achieved by the use of a PACS link device. These devices
need to be mounted on a shelf and be cabled as part of the printing or PACS network.

‘Wet’ laser printers

3.72 These printers take digital image data acquired using modalities such as CT, MRI and angiography and convert it to hard copy film. These films are similar in a number of respects to conventional X-ray film and are viewed using X-ray viewers. Unexposed films, such as standard X-ray films, should not be exposed to light or radiation. The printers may be hardwired via a separate network directly to the imaging modalities and possibly direct to the PACS network. Each modality will be equipped with a suitable interface, which should be located adjacent to the control console.

3.73 Overall, the units are 1500 x 2000 x 800mm (H x W x D). All service requirements are as for daylight automatic film processors. The printers should be sited close to a wall if possible.

3.74 The film storage area for conventional X-ray film should also be used for storing laser-imaging film. Chemicals and similar considerations, detailed in paragraphs 3.55 to 3.58, will apply. Film magazines for wet laser printers may need to be loaded in a dark room in the same way as conventional film processors.

3.75 It should be noted that the use of this printing technology is now in decline as dry laser printing units are being procured in preference to these devices. Dry lasers do not require chemicals, resulting in easier installation requirements and lower running costs.

Solid inkjet printers

3.76 A number of photographic companies sell small inkjet printers for the production of hard copy film images from low resolution modalities such as ultrasound, MRI, radionuclide imaging and PET. They are relatively cheap and can be networked in a similar fashion to dry and wet laser imagers. However, the majority of units available can be installed on a desktop or worktop and are of similar size to a small format dry laser imager.
Figure 3.3 Example of a desktop dry laser printing device

Image reproduced by courtesy of Agfa Medical Systems.

Additional notes:
Weight: up to 100kg.
Supporting table: flat and stable table surface with minimum dimensions of at least 600mm x 800mm.
3.77 Computed Radiography (CR) is a digital process for acquiring plain X-ray film images and can be used as a direct alternative to conventional X-ray film, cassettes and processing. A fully digital or part-digital approach may be adopted. A CR system will consist of a plate reader, an identification terminal or PC and potentially a computer workstation depending on local operational requirements. No fundamental changes need to be made to the primary engineering or installation of general X-ray units with the exception of a re-calibration of the exposure characteristics of the X-ray unit.

3.78 Although CR is a current and developing technology it is likely that it will be superseded by Direct Capture Radiography or Direct Radiography (DR) over the next 10 to 20 years, as the reliability and image quality of this approach improves. The integration of this technology into a diagnostic imaging department is described below. The existing DR devices are not capable of undertaking non-bucky or cassette holder radiography, whereas those for CR do. This may change dramatically with the advent of new devices that will be made commercially available over the coming two to three years.

3.79 The accommodation requirements for CR are similar to those of conventional techniques, but in the majority of cases the processing area will need to be made larger to accommodate the additional equipment involved, such as the computer workstations and patient identification terminals. In addition, hospitals may procure multiple low throughput units to match the operational
requirements of high throughput systems, thus avoiding single points of failure. This will further increase the accommodation requirements.

CR workflow and technology

3.80 In a number of respects the workflow characteristics of CR technology are similar to that of film. CR image acquisition is described in Figure 3.5.

![CR Image acquisition flow chart](image1.png)

Figure 3.5: Example of a computed radiography image acquisition flow chart

3.81 Instead of using plain film as the image acquisition medium, re-usable photo-stimulable plates, referred to as a plate, are utilised. The plate is placed into a cassette, which is exposed to X-rays in a similar fashion to a cassette carrying plain X-ray film. The cassettes used have a similar appearance and are available in the same full range of sizes as those used in conventional film/screen radiography. The difference in CR is in how the image is acquired. The radiographer/technologist will select the appropriate patient details using the identification (ID) terminal. The ID terminal is directly linked to a CR plate reader. The cassettes are then placed in CR reader units where the imaging plate is automatically unloaded and then read using a scanning laser within the CR unit. The process of scanning the plate also ‘cleans’ it and once completed returns it to the same cassette. The cassette is then ready for re-use. Processing speeds are slightly longer than for conventional modern automatic X-ray film processors. The image data and patient details are then matched by the system and displayed together. Example illustrations of CR plate readers are shown in Figures 3.6 and 3.7.

3.82 Unexposed and stored CR plates should not be exposed to light or radiation and are usually contained within the cassette except when processed. The storage requirements for cassettes and plate pairs are the same as for conventional film-based systems.

3.83 The images are displayed for initial review or QA on monitors that are either incorporated within the actual CR reader units themselves or at another computer workstation nearby, linked by a network. Such a workstation may have storage capacity for about 5000 X-ray images. The computer workstation could be used to manipulate or improve the quality of the images acquired. The radiographer/technologist, once satisfied with the standard of the images
produced, may then choose one of the following options:

- print the image acquired using a laser imager as described above. CR is a
digital technology, which potentially allows integration in the filmless PACS
system, but some hospitals may use CR to produce hard-copy film using a
laser printer. These films will have to be stored in the same way as
conventional film. This approach may be taken when the hospital is moving
from a film-based to a digital environment;
- send it to a central archive as part of PACS system and subsequent
reporting elsewhere;
- send to a digital archive serving CR only, as part of a batch of images from
the workstation's local storage unit;

It should be noted that problems have been experienced in using the DICOM
print protocol between CR and laser imagers from some vendors. Because of
this, some hospitals are continuing to use the established Kodak EPA 952
protocol, but future networking developments should allow a move to the
DICOM print standard as it becomes better defined. See Appendix 3: Glossary
of terms for a definition of DICOM.

![Figure 3.6: Large high-throughput Computed Radiography Unit](image reproduced by courtesy of Fuji Medical Systems)

Additional notes:
- Weight: 350kg approx.
- Power supply: single-phase clean 240V AC supply.
Additional notes

Weight: 275kg approx.
Power supply: single-phase clean 240V AC supply.

3.84 Images may be saved to CD-ROM using a small CD writer attached to the workstation.

3.85 There may be a single review computer workstation serving each CR plate reader or, alternatively, a single review workstation may serve up to three CR plate readers. A single review workstation should be installed on dedicated worktops within the processing area incorporating relatively large monitors. The computer review workstations usually form part of the PACS network and may have a separate connection to the laser printing network, in addition to the one provided at the CR reader.

3.86 Some healthcare providers may wish to keep a conventional film processor to provide a back-up function to the CR system. This may take the form of a darkroom processor or a low throughput daylight processor.

3.87 In deciding the number of units to be installed, all of the factors described previously for film processing should be considered. The overall operational requirements of the department should also be considered, such as whether the service is to be provided for 24 hours each day in order to serve an A&E Department. One large unit may support the needs of a whole department, but breakdowns and servicing may mean that the unit is not working for several days per year. It may therefore be appropriate that multiple low throughput devices are used and networked, together with the computer workstations and ID terminals, to form a CR segment. As an example, three 60 plate per hour CR readers and associated devices, e.g. computer workstations and identification terminals, will be needed to support a department having a peak demand of 180 films per hour and also providing 24-hour support for A&E.

3.88 The radiographer/technologist physically transfers the CR cassettes from the X-ray rooms to the plate readers. The processing area should be planned to be in close proximity to and with direct access from the X-ray imaging rooms it.
serves. The relationship between the processing room and adjacent imaging rooms should be similar to that for conventional X-ray film processing.

3.89 One ID terminal is provided for each CR plate reader. This is comparable to a PC-based system, and may be sited on a worktop, with parts of the unit mounted on a wall bracket adjacent to the CR plate reader. The ID terminals may be linked by a suitable interface to a RIS to allow for direct transfer of patient data to the CR segment.

3.90 Image data from fluoroscopy units and other X-ray modalities can be transferred using a network to the same computer workstation previously identified for review, storage and analysis. (See paragraph 3.85.)

3.91 Depending on manufacturer and model, indicative sizes of CR plate readers vary between 1000 x 1000 x 1000mm and 2250 x 2000 x 1000mm (H x W x D). CR plate readers require electrical power only. Manufacturers should be consulted on appropriate operating temperature and relative humidity conditions. Mechanical ventilation of the processing room is likely to be required.

Special case

3.92 Some manufacturers are making available small low-throughput CR plate readers, which are designed to be installed within the shielded control area of a general diagnostic X-ray imaging room. This may have major operational advantages for small units and A&E by reducing staff movements and improving workflow. This is an emerging technology and not many examples have been installed in UK hospitals. A larger control area may be required in order to house the CR reader and associated computer workstation and ID terminal. Further information on the impact of this new technology is described under the section on general radiographic units, Section 4: General X-ray imaging or radiography.

Advantages of CR over conventional film techniques

3.93 The advantages of CR are:

- a lower re-take rate, as it is possible to manipulate the image’s contrast characteristics once acquired using a review workstation. Where the plate has been over-exposed, there should no longer be a requirement to re-take the X-ray examination, as would be the case for conventional X-ray film. This has particular advantages when undertaking ward, ITU and Accident & Emergency examinations. A number of healthcare providers in the UK have already procured CR units specifically for use in A&E, ITU and ward radiographic applications;

- reduced requirement to use chemicals to generate images, although there may still be the facility for hard copy images to be printed using either wet or dry laser printers. In the latter case, there will no longer be a requirement for fixing and developing chemicals to be used on a regular basis;
• substantially reduced storage space requirement for unused film and processing chemicals unless the diagnostic imaging department is printing the majority of CR images acquired;
• elimination or reduction of the need for a darkroom, depending on the extent to which conventional film processing is retained;
• smoother transition to a filmless diagnostic imaging department.

Disadvantages of CR compared with conventional film techniques

3.94 The disadvantages are:

• high initial capital cost when compared to automatic film processing and greater ongoing costs in the case where hard copy films are generated. Capital and ongoing costs may only be offset if the healthcare provider has installed PACS or other types of network for soft copy reporting and review, and has completely moved away from film except for back-up purposes;
• poorer image quality compared to that obtained using conventional film/screen media, particularly in chest X-ray and orthopaedic examinations, where there is a requirement for highly detailed images. However, a number of studies show that this has little impact on the diagnosis from the X-ray films;
• lower throughput in individual units compared to modern integrated automatic film processors;
• increased noise during the processing of the films;
• possible need to increase the size of the CR processing and film viewing area in comparison with automatic daylight film areas to accommodate possibly larger CR plate processors, depending on the model. There may also be a need for an increased number of multiple units in order to give security against breakdown and match the throughput of the daylight film processing system. Deep worktop space will be required for viewing and manipulation workstations associated with the CR plate readers. Wall-mounted X-ray viewers used with conventional processing will still need to be provided following the implementation of CR, although usually in smaller numbers, unless the CR images are printed.

3.95 Where healthcare providers are moving to a CR-based system from a film-based practice, it may be that both technologies will be used in tandem for a changeover period. An interim or temporary space requirement will need to be provided for the CR system(s) whilst they are tested and checked for clinical imaging performance, and on-site training is provided to the operators or radiographers/technologists. In some instances, CR may be slowly integrated into clinical use and plain radiographic images may be acquired simultaneously using both CR and automatic film processors.

3.96 Dental radiographic images can be acquired using CR technology for virtually all types of film size. Separate units may need to be provided in the processing area to support this aim.
Image acquisition – direct radiography (DR) – fully digital approach

3.97 With direct radiography, the detector and electronics necessary to convert the X-rays into an image are incorporated within the actual patient table or vertical chest stand. All manufacturers provide an integrated X-ray unit and detector system for acquiring the images, together with sophisticated electronics for processing the images. Following X-ray exposure, images are acquired and displayed on a computer monitor within 10 to 20 seconds. The operator does not have to process any plates or cassette to form the resultant image. This offers potential advantages over other image acquisition approaches in simplifying staff workflow, improving efficiency and increasing patient throughput. Following image acquisition, the radiographer/technologist will then have the option to print the image using a laser printer or send it to a digital archive. This is similar to the process for CR described above.

3.98 The main disadvantage of DR, at this time, is that operators are constrained to use the DR equipment with patients who are capable of being moved to the appropriate position for the examination. The detector cannot be removed from the room and this makes it impossible to undertake examinations outside the X-ray room or where the patient cannot be moved for the examination. In these cases the DR system will need to be supplemented by more flexible CR or conventional processing equipment in order that non-DR X-ray examinations can be undertaken for patients in locations such as A&E, wards or ITUs.

3.99 Since the DR equipment incorporates mage processing and acquisition within the actual X-ray room, the only separate processing area required will be in support of CR or conventional technologies used to supplement the DR equipment. Space should also be allocated for a laser printer, allowing the radiographer/technologist the option to print the images. An example of DR equipment is shown in Figure 3.8.

Storing, handling and distributing of images – conventional and part-digital

3.100 Departments making use of substantial amounts of film images, acquired using either conventional X-ray or printed laser film, will devote a considerable proportion of their administrative workload to this activity. This will result in significant space planning implications both in terms of room areas and room relationships.

Film sorting and collating: dispatch and return

3.101 These four activities should take place in a single large open plan area. Ideally, it should be adjacent to and have good access to, but be separate from, the film archive and the main reception area for the department. It should also be conveniently located to the processing/viewing and reporting spaces.
3.102 Project teams should pay particular attention to the design of the area used for the sorting and collating of X-ray films. If this area is not well designed it can have serious consequences for the throughput of the radiology department, and hence the patient throughput of the hospital as a whole.

3.103 Previous records and films will be taken from the film archive and held in readiness for out-patient appointments and for new interventional and diagnostic imaging investigations.

Sorting and collating

3.104 Sorting and collating will comprise the following activities:

- ensuring that when current and previous X-ray films are received from the viewing/checking areas the necessary documentation is attached before being passed on for reporting;
- collation and temporary holding of films and documentation in cases where previous records were not initially available;
- sorting unreported films on return from the clinician or ward and their collation with relevant previous films and documents ready for reporting;
- retrospective collation of current and previous films and documents that were the subject of a ‘preliminary’ report, to enable the initial findings to be confirmed;
- making administrative arrangements to ensure that the absence limit (usually one to three days) for unreported films is not exceeded;
- sorting films for reporting into priorities or categories, for example, in-patient, out-patient, accident or those for reporting by a specific radiologist;
- holding films for viewing by visiting clinicians;
- making administrative arrangements for monitoring the dispatch and return of films to radiologists for reporting purposes, to ensure that the time limit, usually between a few hours and three days, is not exceeded;
- handling requests for specific films and data from clinicians with respect to older films and reports;
- assisting clinicians and other members of staff in obtaining radiographic films from previous examinations.

3.105 Films acquired within the last one to two weeks will tend to be heavily accessed by clinicians. Provision of limited film storage may be appropriate in order that films can be stored in this area before being placed in the two-year or long-term film archive.

3.106 A number of workspaces (worktop space) should be provided for the sorting and collating of films in this area. As an indication only, and based on a busy DGH producing 100,000 examinations per year, one such workspace should be allocated for each diagnostic imaging modality that produces film as the end result. Capacity will need to be substantially increased for larger diagnostic departments producing greater quantities of film. Clinicians and, potentially,
researchers will also probably wish to work in this area and therefore ample worktop should be provided to allow for one or two ‘hot’ workspaces.

Figure 3.8 Example of a Direct Radiography Unit

Image reproduced by courtesy of Kodak Health Imaging

3.107 Each workspace will require a computer terminal linked to the Radiology Information System/Hospital Information System (RIS/HIS). X-ray film viewers will be required at a ratio of one twin unit to one workspace. Space should be provided for a photocopier and trolleys used for document movement. Suitable racking will be needed for the sorting and short-term storage of films and records.

3.108 Since sorting and collating staff will spend most of their working day in this area, provision should be made for comfortable working conditions and priority should be given to providing natural ventilation and daylight.

3.109 For departments that require a digital record of the X-ray film, it may be appropriate, for reasons of workflow, staffing and film access, to locate a digitiser in this area or directly adjacent to it. This may be required for teleradiology and/or departments making the transition from X-ray film to digital technologies. The digital archive to support this activity may be housed in a machine room elsewhere in the hospital or department, as described below. Where such a digitiser is located, measures should be undertaken to minimise the amount of dust and to control the ambient temperature, as these factors will affect the function and reliability of the unit. The provision of air conditioning in this area may be particularly appropriate.
3.110 The size of digitisers varies between manufacturers and will also relate to clinical function, as high resolution digitising is required for mammography films. Smaller models may be worktop-mounted, with an associated computer workstation. Larger models may be free standing and also require an associated computer workstation. In addition, worktop space should be provided around the digitiser to allow for the sorting of films during digitisation.

Dispatch and return of films

3.111 This activity should be carried out adjacent to and as an integral part of the sorting and collating activities described above. Additional reception counter style space should be allocated for the dispatch and return of films and reports and for queries concerning their location. Storage racks will be required for the preparation of films and reports for dispatch.

3.112 If immediate reporting is not available, and the clinician wishes to see the films before the patient leaves the hospital or before deciding on treatment, the unreported films are dispatched to that clinician, usually in a suitably distinctive ‘unreported films’ envelope. Where possible, previous films will be included for comparison. The patient’s original envelope and documentation will be taken to the sorting area to await the return of the unreported films. A separate computer terminal may be provided in order to help staff keep track of dispersed records and films. This may be integrated with the RIS and HIS.

3.113 If the department sub-divides the film archive so that older films are stored remotely from the department, then this area may also be used to collate and dispatch films to the remote archive.

3.114 As a guide, and based on the assumption that a department is producing 100,000 X-ray films per annum, two people will be working in this area on a full-time basis, particularly if films are transferred to another site after the two-year limit has expired.

Film archives

3.115 Generally, the written radiological report constitutes a legal document and must be retained for a minimum of eight years. This should be undertaken digitally using a small computer server or small archive. Additionally, printed copies of the reports may be added to the film packet where appropriate. Physical access to the computer server should be restricted to authorised members of staff and the server should be stored in a locked room. The provision of a back-up server in a separate building, duplicating all the data on the main unit, should be considered as a means of ensuring a data back-up and protection against fire. It should be possible to access this archive through an RIS network. The accompanying X-ray film should be stored in an accessible film archive according to local hospital policy, but typically for seven years. Film archives may be sub-divided according to the age of the diagnostic images and type of image acquired.

3.116 There will be special requirements for longer-term retention of images of paediatric patients, where the films should be retained until these patients reach
18 years old or the films become seven years old, whichever is longer. For those patients with disabilities and where research is undertaken at the institution, the films should be retained for at least 50 years or until the clinician no longer believes that the images make a relevant contribution to the patient’s care. Tertiary referral centres and teaching hospitals may have a requirement to keep X-ray films longer than 50 years for research and teaching purposes.

3.117 As stated above, the film archive may be sub-divided into two distinct areas. Storage may be provided for films for up to two years in the main department, since research has demonstrated that clinicians and radiologists working in the hospital frequently access them. Films greater than two years old are less likely to be accessed frequently, so it may be more economic to store them away from the department, either elsewhere in the hospital or at another location.

3.118 Films may be stored on fixed racking or, alternatively, using various proprietary systems, such as carousels or floor tracked mobile shelves, which can be moved to gain access to particular files or films where space is limited. X-ray film when stored is very heavy and this should be taken into account in the construction of the shelves. Space should be available between the shelves to move a trolley. The shelves should be stacked as high as is possible for safe access using ‘kick stools’.

3.119 Storage for any other recording media, such as videotapes and optical disks, should also be provided. This may be in addition to the film storage requirements if the department is taking a part-digital and part-conventional approach to the processing of images. Requirements will depend on the arrangements at the modality for the provision of CD-ROMs and videotapes. Common practice, as currently observed, is to keep the CD-ROMs in the control room related to the modality. Project teams should review this policy early in the planning stages and consider use of ‘fireproof’ safes.

3.120 Wherever records are stored, steps should be taken to maintain confidentiality and security of the data. The use of key-coded door entry systems at the entrance to the film archive should be considered.

3.121 The film library may house the only record of radiological investigations undertaken in a department, so special measures should be taken to minimise the risk of fire in this area.

3.122 The film archive, or the two-year film archive if the archive is subdivided, should be adjacent and directly accessed from the sorting and collating areas within a department.

3.123 Depending on the size and layout of the film archive area, the provision of a small worktop space and a two- or three-panel film viewer should be considered to allow clinicians and other clerical staff to review and check films before leaving the area.

3.124 Film archives should be carefully planned in terms of layout and circulation. The stored X-ray films and records will generate and collect dust and consideration should therefore be given to minimising dust accumulation by means of
mechanical ventilation. Lighting should be to a high standard with light fittings laid out in relation to the racking and if possible natural light should be introduced, possibly by the use of high level windows.

Storing, handling and distribution of images – fully digital approach

Sorting, collating, film dispatch and return, film archiving

3.125 With fully digital image acquisition and archiving, there is no longer a requirement for large spaces to be allocated to the activities of sorting, collating, dispatch/return and film archiving. The extent to which this can be achieved will depend on the modalities used. However, even in fully digitally-based diagnostic imaging departments with integrated hospital networks, there will be a residual requirement for the provision of a small sorting/collating area and film archive for hard copy film in the following instances:

- images that have been generated elsewhere, possibly at another hospital which does not have teleradiology facilities;
- hard-copy film generated by mammography studies;
- hard-copy film produced at the request of other hospitals or clinicians;
- hard-copy film produced during downtime of the PACS or when the system is undergoing a major upgrade;
- hard-copy film generated during the transition period between PACS and conventional imaging.

3.126 When a transition is planned from film use to partly or largely digital use then a proportionate extent of the area formerly used for sorting and collating, and film archiving will probably become available for other uses.

3.127 Local digital archive storage may be provided for individual or multiple digitally-based modalities, such as CT and MRI. This may take the form of a small CD-ROM archive or a small jukebox, for example, which may be able to hold images from these modalities for up to seven years. This may be located in a control area or reporting area attached to a combined CT/MRI computer workstation, or, preferably, within a separate environmentally controlled machine room. Note that 24-hour access to the archive for clinical images will be required. This may be used as a precursor to PACS, or used in conjunction with it and is sometimes referred to as ‘mini-PACS’.

3.128 A machine room for a hospital-wide PACS system, which will include space for the installation of the CD-ROM archive and server, should also include the digital equivalent of a film archive or magneto-based optical archives, computer racks and server units. This machine room will require air conditioning to maintain environmental conditions within certain tolerance values, to minimise any downtime from overheating. Space around the archives or ‘jukeboxes’ should be left for maintenance and upgrading.
3.129 An office, adjacent to the digital archive or machine room, may be required for systems support engineers. Space for tools and some spare parts should be provided.

3.130 As a general indication, the total area of the machine room and supporting and residual areas will be approximately one-quarter of the total area of a conventional film archive combined with sorting and collating areas.

3.131 Further information will be contained in a future PACS supplement.

Image reporting

3.132 Diagnostic image reporting can be undertaken either in shared reporting areas or within radiologists’ offices, or within the control areas, where more complicated imaging or interventional procedures are used.

3.133 Reporting facilities, individual or shared, should be grouped together with easy access to secretarial facilities and, in larger departments, to the central seminar room.

3.134 The requirements for reporting areas should be determined at an early stage in the design process as the preferred approach will have an impact on the floor area of the department. In a department that employs both consultant and non-consultant radiologists and where some films are reported by senior radiographers/technologists, a mixture of personal offices equipped for reporting images and shared reporting spaces should be provided.

3.135 Shared facilities have the advantage that they allow clinicians to share results easily and, where appropriate, discuss difficult cases, thereby permitting improvements in clinical understanding and continued professional development. Some cost savings through space and equipment efficiencies may be achieved, as clinical reporting stations can be provided for more than one radiologist. Expensive and one-off pieces of image viewing equipment such as a Smartlight™ viewer (see paragraph 3.145) or specialist computer workstation would also be accommodated in a shared reporting area. This equipment has particular space requirements, as described below. The main disadvantage is the loss of privacy and the potential for continuous interruptions from noise and other members of staff. Even when shared reporting spaces are included in the design, general office space should also be included, to allow clinicians to undertake general administrative duties such as auditing and education.

3.136 Image reporting areas and radiologists’ offices should be adjacent to the main department. This is made easier if the hospital has installed a PACS system or has some networking capability between the reporting areas and some of the modalities.

3.137 The type of reporting will significantly affect the nature of reporting spaces. For hard-copy reporting, film images are viewed on a series/bank of X-ray viewers (light-box). Soft copy reporting requires digital images to be viewed on single or
multi-viewing monitor computer workstations. A combination may be needed because of the presence of both digital and analogue modalities, or because of a transition phase towards a full PACS environment.

3.138 If CRT monitors are used, the space required for soft copy reporting workstations is significantly greater than that required for hard-copy reporting. This is principally due to the depth of worktop space required. Using TFT flat screen displays reduces the depth of worktop required.

Radiologists’ offices

3.139 There should be an office for each full-time consultant and/or whole-time equivalent consultant. There will need to be storage space for the audit and confidential records, and a limited space for books, periodicals and images of special interest. Consultant radiologists’ offices will be used for viewing and reporting, for consultation with colleagues and others, for audit, management and general administrative work/

3.140 If reporting is undertaken from hard copy films, then at least six viewing boxes in a three wide by two deep arrangement and good sized worktop space, at least 800mm deep should be provided. Workspace should also be provided for a PC workstation, which may be interfaced with the RIS and must at least allow access to the typed reports for checking and other administrative duties. A low speed data access point will be required within the room to facilitate this activity. The dictation of reports may be undertaken using an integrated department-wide, digital dictation system or, alternatively, using small hand-held dictaphones. See also the notes below on secretarial support activities regarding the introduction of voice recognition technologies. See paragraph 3.159.
3.141 Where reporting is undertaken in this area, and one or more of the imaging modalities generate images digitally, it may be impractical to print the images acquired. If so, space should be provided for an imaging workstation to review and report the images. This workstation may have up to four 540mm CRT monitors stacked in a two by two arrangement to allow the display of multiple sets of data. A high-speed data access point for image transmission should be provided, which may also access the RIS system.

3.142 See also paragraph 3.153, Environmental requirements for reporting.

Shared imaging reporting areas

Hard-copy film reporting suitable for all modalities

3.143 These rooms should be equipped with continuous worktops, which should be deep enough to accommodate a PC workstation for access to a RIS, and which will also provide general film layout and writing areas. Typical depth of this worktop will be 600-800mm. The worktop may be sub-divided to provide individual workstations, using sound absorbent screens. Each workstation area should be at least 1800mm wide to accommodate up to four wall-mounted X-ray single viewers side by side.

3.144 The worktop design should allow for easy cable management and should have cantilevered under-worktop supports to allow for easy movement by staff along the worktop. Each workstation should have digital dictation, phone and data access points as appropriate to local policy and networking development plans.

3.145 Although expensive, a Smartlight™ system may be considered, in which case a worktop depth of at least 850mm, preferably 1000mm, will be required. A Smartlight™ system is an advanced film unit designed to enhance film viewing and reporting by allowing low glare viewing of selected portions of the hard copy film, together with other features, such as contrast enhancement, that are normally associated with soft copy reporting. The units are installed on a worktop and an indicative footprint for a typical model would be 700 x 350mm (W x D). It would stand at least 700mm high above the worktop. A separate bracketed wall-mounted optical device forms part of the Smartlight™ system. This system is more likely to be used in mammography or paediatric situations.

3.146 Similarly, a multi-rotating automatic X-ray film viewer may be appropriate in one or more workstation areas. Alternatively, a single unit may be provided in a seminar room. These units are floor standing and in some cases semi-mobile. Units allow between eight and ten X-ray films to be viewed simultaneously in a five wide by two high arrangement. Many more films can be loaded into the viewer before the commencement of the reporting session and this allows, in theory, for faster film handling times. An indicative overall size of such a unit is 1800 x 2000 x 1000mm (H x W x D), including a film layout workspace.

3.147 Multi-rotating film viewers may be particularly advantageous for reporting large numbers of films acquired in screening, for example mammography or chest X-ray films for tuberculosis. For reporting screening examinations in a shared
reporting area, it is important to achieve good acoustic separation between the individual workstations.

3.148 In planning the layout of a hard copy reporting area, flexibility should be built in by allowing additional worktop space for possible future soft-copy reporting.

3.149 See also paragraph 3.153, Environmental requirements for reporting.

Soft-copy film reporting suitable for all modalities

3.150 A worktop space will be required that is least 500mm deep for a keyboard and mouse, as well as a console space accommodating four-image review in a stacked 2 x 2 arrangement. The console space will need a depth of approximately 1250mm, depending on the depth of monitor used and cable space needed. This depth may be reduced with the gradual introduction of TFT flat screen technology. Such a workstation will be at least 1000mm wide for a 2 x 2 arrangement, but will increase if more monitors are required. Additional workspace may have to be provided for an RIS terminal if the functions of this database cannot be integrated with those of the digital reporting computer workstation. A high-speed data access point should be provided to allow fast transfer of the images to the digital viewing units.

3.151 Particularly in transitionary periods between hard copy and soft-copy film reporting, continued provision should be made in this area for a limited amount of hard-copy film reporting.

3.152 Reporting for digital mammography films usually requires high-resolution monitors, which may need to be of higher specification than those used to report other images from other modalities. A separate workstation containing a greater number of monitors stacked singly in a horizontal plane and necessitating a greater width for the workstation, may have to be created to facilitate this requirement.

Environmental requirements for reporting

3.153 Construction of the reporting stations and radiologists’ offices should be designed to achieve speech privacy.

3.154 A number of studies have shown that ambient light conditions can have an effect on the accuracy of reporting diagnostic images acquired either by hard or soft-copy reporting. Light generated from artificial sources should be easily controlled to below 2 lux by the use of dimmer switches. If the room contains a window, a blackout blind should be installed. Task-focused lighting should be provided to assist the radiologists in some of their activities. These environmental conditions are particularly important when undertaking the reporting of mammography films.

3.155 As a minimum, the rooms should be mechanically ventilated, but where possible, air conditioning should be considered to allow more comfortable working conditions.
Secretarial space and rooms

3.156 The current practice in the UK is for radiologists to dictate their reports using either a handheld dictaphone or a departmental digital dictation system. The reports are transcribed by secretaries to the radiologists working in the department and then saved to an RIS system or small PC server connecting a number of terminals within the secretarial office. An office area, usually within a shared space, will be required for each secretary in the performance of his/her duties, which include supporting the radiologists in configuring appointments and meetings. As a guide, at least one secretary will be employed per consultant radiologist, with one additional member of the secretarial team supporting two or more registrars.

3.157 If a digital dictation system has been installed together with recording facilities, flexible working practices, such as ‘hot-desking’ and remote or home-based working, may be permitted with the provision of appropriate technology.

3.158 The secretaries' office space should be located close to the radiologists' offices and the shared reporting area, as the secretaries will probably wish to seek clarification of clinical terms and other aspects of the reports dictated by the radiologists.

3.159 Voice recognition systems and software are currently in development, but the technology is not yet sufficiently advanced for this particular application. In the short term, a number of commercial systems are available that enable the radiologist to simply construct a standard report. Reporting technologies may change over the next five years and reduce the need for secretaries to type dictated reports. The future role of radiology secretaries may change considerably.

Multidisciplinary clinical case conference rooms

3.160 It is essential that accommodation for multidisciplinary radiological conferences should be provided in association with the diagnostic imaging department. For smaller hospitals, it is anticipated that this accommodation will be shared with other clinical departments such as orthopaedics and therefore may be sited outside but adjacent to the diagnostic imaging department. In larger and medium sized departments and those with a high frequency of consultation, such as neuroradiology, this will be sited within the diagnostic imaging department. Access to the RIS should be provided in either variant of seminar room outlined below. Teleradiology facilities may also be required.
Conventional film-based departments supporting some digital modalities

3.161 Facilities should be provided for simultaneously viewing a large number of multiple sizes of X-ray film and other digital images. This may be achieved using the following equipment:

- a multi-rotating automatic X-ray film viewer, as described for reporting areas;
- a bank of wall-mounted or mobile X-ray film viewers allowing a minimum of eight films to be displayed. The mobile viewer will include an integral lay-up shelf and will typically be sized 1750 x 1600 x 500mm (H x W x D);
- a computer workstation for displaying images acquired at digital modalities and stored to CD-ROM. It should be equipped with two dedicated monitors;
- a Smartlight™ X-ray viewer.

3.162 Provision, in the form of trolleys and ceiling or wall-mounted projection screens, should be made for projecting slides, OHPs and lap-top based presentations. A television monitor may also be required to view videotapes of clinical images stored to this medium and for displaying still images acquired from an in-room column-mounted television camera. This monitor may be mounted on a trolley, worktop or wall bracket. Storage will also be needed for associated VCRs.

3.163 Additional equipment may include:

- a white/marker board;
- general storage provision, possibly including magazine racks;
- a small amount of worktop or table space together with suitable wall-mounted power, phone and data outlets.

3.164 The lighting in the room should be dimmable to the low lighting conditions required for reporting. Blackout blinds should be fitted to any windows. As a minimum, mechanical supply and extract ventilation should be provided, but air-conditioning is preferable.

3.165 In most situations the room should be sized to allow for comfortable seating for at least 15 to 20 people.

Digitally-based departments

3.166 The room should be equipped with a fixed ceiling or floor-mounted digital projector and large projection screen for the display of multiple digital diagnostic images. As an indication, the projection screen should be approximately 2000 x 3000mm (H x W). The selection of projected images will be controlled at a computer workstation, which may comprise up to four large diagnostic image display monitors with associated devices. This workstation should be located on a mobile trolley and, where small numbers of clinicians are involved, the conference may take place at the workstation itself. A high-speed data link must be provided for use with this workstation. Where it is possible to simultaneously
view the digital images at two or more discrete locations within or beyond the hospital then the provision of data, video and phone conferencing facilities may be appropriate.

3.167 A small number of film viewing boxes should be provided, again on a mobile trolley, to review older hard-copy images. These will almost certainly be required in the transition phase from film to digital imaging. High security should be maintained within this room. In all other respects the design of the room should be as described for hard-copy film conferencing, with the exception of the provision of expensive hard-copy film viewing devices and of many X-ray film viewing boxes.

Summary

3.168 The three different approaches, conventional, part digital and fully digital, have been summarised in flowcharts. See Figures 3.10 – 3.12.
The radiologist, or in some circumstances radiographers, will prepare dictated reports on the diagnostic images acquired. This activity may take place in a processing/viewing area or control room area adjacent to the diagnostic x-ray imaging room. This activity requires workshop areas and wall mounted x-ray viewers.

Using the Radiology Information System (RIS) the radiographer checks the patient’s details on a workstation and prints these our for attaching to the patient’s film envelope. This may also take place in a processing area or control area of a general x-ray room - appropriate worktop space for a computer workstation will be 900mm high and 800mm deep. A small printer may be attached to the workstation.

The patient is brought into the imaging room from a cubicle or waiting area - see text below.

The patient is positioned appropriately for the examination and the diagnostic images are acquired - see text below.

The films are then marked with the patient’s details. This is usually undertaken in the film processing area. Film markers will be worktop mounted and more than one of these may be required depending on workflow and number of processors.

The patient waits in the diagnostic room or returns to a sub-waiting area while the films are checked for technical quality.

If repeat projections or images are required, additional or repeat images are required. Consultation with a senior radiographer or radiologist may be required at this stage.

The films be sent directly to the requesting clinician via sorting, collating, transferred with the patient, or prepared for reporting.

Additional or repeat images required

No further images or repeats required

Images are sent to the requesting clinician for review

Images are sent for reporting

The films are sent for sorting and collating prior to reporting. The activities of sorting, collating patient’s films and records, arranging their despatch and return and archiving, will form a major administrative activity within a diagnostic imaging department.

The requesting clinician will review and return the images to the radiology department for sorting etc.

The films be sent directly to the requesting clinician via sorting, collating, transferred with the patient, or prepared for reporting.

If repeat projections or images are required, consultation with a senior radiographer or radiologist may be required at this stage.

The films are sent for sorting and collating back to the appropriate archive, and reports are distributed to the requesting clinician. In some instances the clinician will receive the film and the report.

The dedicated reports will be transcribed by secretarial staff and distributed, possibly with the diagnostic images, to interested clinicians. Reports may be distributed as paper copies or by the use of the Radiology Information System interfaced with a Hospital Information System. In either case digital copies of the reports are sorted on a small archive in the department for back-up purposes.

Figure 3.10: Flowchart of workflow and image management sequence for film/conventional based procedures
The patient is brought into the imaging room from a cubicle or waiting area - see text below.

The patient is positioned appropriately for the examination and the diagnostic images are acquired - see text below.

The radiographer reads the request and reviews previous paper reports and images on a workstation. This may take place in a processing/viewing area or control area adjacent to the diagnostic x-ray imaging room - this activity requires worktop areas and wall mounted x-ray viewers possibly in addition to the modality workstation.

Using the Radiology Information System (RIS) the radiographer checks the patient’s details on a workstation and prints these out for attaching to the patient’s film envelope. This may also take place in a processing area or control area of a diagnostic imaging room - this RIS may be interfaced with modality workstations and the radiographer may be able to view the patient’s details as part of a worklist.

The procedure is ended and the appropriate diagnostic images are then laser printed and possibly checked in the control/processing or procedure room area. The patient is escorted from the imaging room and returns to the waiting area, clinic, recovery area etc.

The requesting clinician will review and return the images to the radiology department for sorting etc.

The films are sent directly for reporting. The activities of sorting, collating patient’s films and records, arranging their despatch and return and archiving, will form a major administrative activity within a diagnostic imaging department.

The radiologist, or in some circumstances radiographers, will prepare dictated reports on the diagnostic images acquired. This activity may take place either in the radiologist's/radiographer's offices or in a shared reporting area. The spaces and rooms required to facilitate this activity are described in the reporting areas section below.

The dedicated reports will be transcribed by secretarial staff and distributed, possibly with the diagnostic images, to interested clinicians. Reports may be distributed as paper copies or by the use of the Radiology Information System interfaced with a Hospital Information System. In either case digital copies of the reports are sorted on a small archive in the department for back-up purposes.

The films and a copy of the report are sent for sorting and collating and placed in the appropriate archive. In some instances the clinician will receive the film and the report before the film is archived.

Figure 3.11: Flowchart of workflow and image management sequence for soft-copy laser printing
The radiographer reads either the paper or digitally based request and reviews previous reports and images in a workstation or film viewer. This may take place in a processing/viewing area or control room area adjacent to the diagnostic X-ray imaging room. Previous images may be transferred to the workstation from a central or local digital archive.

Using the Radiology Information System (RIS) the radiographer checks the patient’s details on a workstation and amends these at the modality workstation if required. This may take place in a processing or control area of a diagnostic imaging room. This RIS will probably be interfaced with the modality workstations or if not available, the radiographer may have to re-enter these at the modality workstation. Additional space should be allocated for an RIS terminal if the latter applies.

The patient is brought into the imaging room from a cubicle or waiting area - see text below.

The patient is positioned appropriately for the procedure and the diagnostic images are acquired - see text below.

The patient remains in the diagnostic room whilst the images are checked for technical and clinical quality at the modality workstation or exam room monitors. The advice of a radiologist, or in some cases a senior radiographer, may be sought in this regard.

If repeat projections or images are required to demonstrate the viability of the study or intervention, further images are acquired.

The procedure is ended and appropriate diagnostic images are then sent to a local or central archive using a local area network or intranet. The patient is escorted from the imaging room and returns to the waiting area, clinic, recovery room etc. The use of a laser printer is described above.

The radiographer may save the images acquired to a small local archive, CD-ROMs or other suitable media as a means of back-up. This may take place following an examination or at the end of a working day. CD-ROMs may be stored on open shelving within the control area, but better practice would be to store these in a fireproof safe for security, confidentiality and fire protection of this valuable patient data. This safe may be shared between more than one modality.

If repeat projections or images are required to demonstrate the viability of the study or intervention, further images are acquired.

The radiologist, or in some circumstances radiographers, will prepare dictated reports on the diagnostic images acquired using workstations. This activity may take place either in the radiologist’s/radiographer’s offices or in a shared reporting area. The spaces and rooms required to facilitate this activity are described in the reporting areas sectioned below.

The digital images are downloaded from the central or local archive to the reporting workstation(s). Hard-copy film etc may be sorted, collated and archived at this stage.

The radiologist, or in some circumstances radiographers, will prepare dictated reports on the diagnostic images acquired using workstations. This activity may take place either in the radiologist’s/radiographer’s offices or in a shared reporting area. The spaces and rooms required to facilitate this activity are described in the reporting areas sectioned below.

The dictated reports will be transcribed by secretarial staff and distributed, possibly with the diagnostic images, to interested clinicians. Reports may be accessed by the use of the Radiology Information System interfaced with a Hospital Information System. In either case digital copies may be stored on a small archive for back-up purposes.

Digital copies of the reports may be sent to clinicians outside the hospital.

Figure 3.12: Flowchart of workflow and image management sequence for soft-copy image distribution and reporting
4. General X-ray imaging or radiography

Introduction

4.1 This section describes the equipment and accommodation required to facilitate general X-ray diagnostic imaging (general radiography) procedures. It includes descriptions of the diagnostic rooms, supporting spaces and associated aspects of design and construction. The descriptions are further supplemented by the text in Appendix 2: Engineering requirements.

4.2 Other sections of this document describe imaging procedures and the design of rooms for specialised X-ray diagnostic imaging procedures, such as fluoroscopy, angiography and interventional radiology.

4.3 The use of general X-ray as an imaging modality has been replaced in some radiography facilities by ultrasound, MRI and CT.

Clinical and operational objectives

Cancer imaging

4.4 X-ray imaging is useful in initial investigations for diagnosing benign and malignant tumours. Although the test may not be specific or sensitive, an X-ray examination may be used to exclude some types of pathologies, or provide suitable evidence for clinicians to request further investigations with other modalities, in particular CT, MRI or radionuclide imaging.

4.5 Since X-ray imaging can be used for the planning, staging, monitoring and follow-up after and during radiotherapy and chemotherapy treatments, a general X-ray unit may be installed in, or close to, a cancer centre or unit to facilitate these objectives.

4.6 Patients attending a cancer out-patient clinic may be referred for an X-ray investigation and asked to return to the clinic with the X-ray films. Alternatively, the X-ray department may have arrangements in place to facilitate this transfer.

4.7 CR facilities, described in paragraphs 3.77 to 3.96 of this guidance, may speed up this process, as images can be distributed over local and wide area networks.

Chest imaging

4.8 Diagnostic imaging, including chest X-ray examinations, will be required as one of the first line examinations to support chest pain clinics. Therefore it may be appropriate to install general X-ray units close to or as part of these clinics. Further information on these facilities is given in NHSScotland guidance SHPN 28, Facilities for cardiac services.
4.9 Chest X-rays may make up a large percentage of the total X-ray examinations undertaken within a diagnostic imaging department. The majority of general X-ray rooms should be fitted with facilities to permit these examinations to be undertaken for both paediatric and adult patients. The chest X-ray may be used to investigate the following pathologies:

Tuberculosis (TB) and dedicated chest units

4.10 The incidence of TB is increasing, particularly in some of the larger cities within the UK. TB is also a likely opportunistic infection with patients suffering from HIV or AIDS. The chest X-ray or radiograph remains the mainstay of diagnostic investigations in this area.

4.11 Specialist digital chest units may be appropriate in this application for reasons of speed, accuracy, data retention and access to patient data in screening applications. Some tertiary or large secondary care hospitals may consider it necessary to install dedicated units. The built environment implications of these units will be described in Part 2 of this guidance.

Cardiopulmonary disease and trauma

4.12 The chest X-ray can be used as one of the first line diagnostic investigations into congestive heart disease or an enlarged heart and into pulmonary conditions arising from infection or injury.

4.13 For in-patients, examinations may be undertaken in coronary care units using mobile X-ray systems. See Section 14: Mobile vehicle scanning units.

Pulmonary embolism

4.14 A chest X-ray is usually undertaken before a radionuclide ventilation and perfusion scan for suspected pulmonary embolism. The diagnosis is made using the results from the radionuclide investigation or CT combined with the chest X-ray.

Fracture and orthopaedic clinics

4.15 Patients who are attending fracture and orthopaedic clinics may be referred for an X-ray examination during the clinic. As these clinics tend to be relatively busy, the turnaround time should be fast and patients may be asked to return to the clinic with the films or have these sent directly to the clinician during the clinic. The purpose of the X-ray investigations may be to monitor bone repair following a fracture or to monitor the success of a hip replacement operation.

4.16 Alternatively, images acquired using CR may be returned to the clinicians at the time of the clinic, using a local area network. This may include the use of a large digital archive. Alternatively, images may be printed within the department and maintained as a permanent medical record and used for reporting purposes.
4.17 The orthopaedic/fracture clinics and the general X-ray facilities used to support the clinics should be relatively close to each other. Some options in this regard are described later in this section under Trauma Imaging X-ray. See paragraphs 4.80 and 4.81.

Joint radiographs in preparation for surgery

4.18 Joint radiographs are used for patients prior to undergoing surgery to replace a hip, knee or possibly a shoulder joint.

Mobile general radiography

4.19 If patients cannot be moved from the ward or another clinical unit, the radiograph may have to be taken in situ using a mobile X-ray unit. Aspects of radiation protection in relation to ward use of mobile X-ray equipment and design of facilities for the storage and maintenance of mobile equipment are described in Section 14.

4.20 The images acquired may be processed:

- in the main processing area of the diagnostic imaging department;
- using film processing, if supported within a business plan;
- in CR facilities at or near the clinical unit. This is becoming more common.

In some cases the processing facilities may be shared between an ITU, CCU and a high-dependency unit.

4.21 For a discussion of mobile image intensifiers, refer to paragraphs 6.70 to 6.73.

General support for A&E

4.22 General X-ray equipment is used heavily in support of Accident & Emergency, often in diagnosis of suspected fractures or other forms of trauma. Further details are provided in the Trauma Imaging section, paragraphs 4.80 to 4.107.

4.23 The physical relationship between the general X-ray facilities and the A&E Department needs to be carefully planned. Some options for this provision are considered below.

Patient journey

4.24 Refer to Section 3: Imaging Approach which describes patient journey aspects during processing and checking. This subject will also be considered in the forthcoming supplement on PACS.
Referral

4.25 Patients may be referred for a general X-ray examination as out-patients by a GP, whilst attending an out-patient's clinic, as an in-patient transferred from the ward areas of the hospital, or directly from the A&E Department. In the majority of cases, a request form will accompany each patient referred. Out-patients will usually be attending by appointment, either directly at the diagnostic imaging department, or from another out-patient specialty clinic requiring diagnostic imaging support. Many departments now have open access for GP patients who are examined on a first-come basis. A member of administrative support staff will enter the details from the request form into the Radiology Information System (RIS) or, for referrals made out of core hours, the radiographer/technologist will undertake this task at the time of or during the examination.

Examination attendance

4.26 Patients may arrive either on foot, in a wheelchair, or on a trolley or bed. The doorway entrance used for patients must allow access for King’s Fund beds, particularly those from ICUs, with accessories such as drip stands and other monitoring equipment.

4.27 Out-patients will report to the main reception area and will be asked to wait in a local sub-waiting area or main waiting area, prior to examination. At reception, the patient’s inclusion on current diagnostic imaging work lists will be checked and confirmed. These work-lists are typically managed using a computer-based RIS which is linked to the individual X-ray rooms. The request form will be taken to the processing area either by the radiographic or the administrative staff, thus making the radiographer/technologist aware that patients are attending for their examination. Out-patients will either return home and make an appointment with their GP or return to the out-patient clinic they were attending.

4.28 In-patients, who may have received sedation, will be referred from ward areas and, in some instances, given a higher priority than out-patients. The request form will be sent directly to the diagnostic imaging department and the examination will be pre-booked and co-ordinated with, if necessary, the hospital porters. If possible, separate access routes and waiting areas should be provided for in-patients, who may be unwell and transferred on trolleys or beds. In-patients will also need to check in at the main reception although accompanying staff may assist in this process. Once the examination has been completed, the in-patients return to the wards.

4.29 Patients attending from an adjacent A&E department may be non-urgent. Non-urgent ambulant cases may bring their own request forms to the reception area and will remain in the main or sub-waiting areas, also used by out-patients, until they are examined. Urgent cases are likely to be transferred by trolley and will be examined as soon as possible. Such patients may be accompanied by nurses, porters and, in some instances, doctor or other clinician. Once the examination is completed, patients may return to A&E or be sent directly to a general ward or, where appropriate, to CCU or an HDU. General X-ray rooms
used for A&E procedures should be made slightly larger to allow for good manoeuvrability of beds and trolleys.

4.30 According to the nature of the X-ray examination and the body part being examined, patients may need to partially or fully undress, and change into a hospital gown. Alternative planning arrangements for the provision of patient changing and waiting facilities are described in the room descriptions below.

4.31 When compared with many other diagnostic imaging procedures, general X-ray procedures are typically of short duration. As an indication, the whole procedure may take on average ten minutes per patient.

Special paediatric considerations

4.32 Parents and guardians may accompany paediatric patients, possibly with siblings and other nursing staff or volunteers. Sometimes, those accompanying the paediatric patient will be present during the examination either within the examination room itself, with appropriate radiation protection, or within the control area. The space allocated for the control room should allow for relatives if high numbers of children are to be examined.

List of accommodation

4.33 The list of accommodation in support of a general X-facility room should be as follows:

- an examination room containing the X-ray tube, patient table and possibly vertical stand or bucky;
- a control area shielded by the use of fixed lead radiation shielding screens. This may take up a portion of the examination room or may be a separate area;
- a processing area to develop the films. In some instances this may not be required and will depend on the technological options chosen;
- sub-waiting areas for both out-patients and in-patients where appropriate;
- changing cubicles for patients;
- toilets for use by the patients and accompanying relatives.

4.34 Accommodation which may be shared with other modalities in a larger diagnostic imaging department is described elsewhere but listed here for reference purposes:

- a porters’ base to assist with the transfer of patients to and from the wards;
- a counselling room;
- a main reception area for patients.
4.35 Where a film processing/viewing area is planned within a facility, the general X-ray examination room must be directly adjacent. The control area within the X-ray room should adjoin the processing and viewing area for radiation protection and staff workflow reasons.

4.36 Patient changing facilities and related sub-waiting areas, where needed, must be readily accessible to the examination room.

Room and equipment descriptions

Examination area

The X-ray tube

4.37 This may be mounted on a telescopic vertical column, which is ceiling-suspended on mobile tracking, allowing the tube to be moved over a wide range of alternative positions. The X-ray tube may also be rotated in both directions in relation to the vertical column. This configuration is favoured, due to its inherent flexibility, particularly where A&E radiography is undertaken. Further detailed requirements for the installation of ceiling-mounted X-ray tubes are described in Appendix 2: Engineering requirements.

4.38 Alternatively, the X-ray tube may be on a floor-mounted column, possibly integrated with the patient table and X-ray generator. This gives a compact but less flexible X-ray unit. Such a unit may be suitable where space is limited, but is not appropriate for A&E radiography or applications where more flexibility is needed.

4.39 Figure 4.1 illustrates the configuration described above. Appendix 1 contains other example plans.

The patient support or table

4.40 For many X-ray examinations, the diagnostic image will be taken with the patient lying on the table and positioned according to the particular body part to be imaged. The table is a substantial item of fixed floor-mounted equipment. The tabletop and film cassette holder move together, independently of the base of the table, are adjustable for height and for horizontal movement in two planes, and require a power supply, necessitating under-floor cabling. The X-ray table also incorporates the Automatic Exposure Control (AEC) devices and a film bucky incorporating an oscillating radiographic grid into which the X-ray film cassette is placed prior to exposure.

4.41 The table will be installed off-centre with respect to one room axis and central to the other, as indicated by the example plans and key diagrams within Appendix 1. This is to facilitate patient access and transfer of patients from trolleys.
Typical Room Layout

<table>
<thead>
<tr>
<th>Component</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Console</td>
<td>560</td>
<td>310</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>2 Table</td>
<td>2100</td>
<td>880</td>
<td>690</td>
<td>441</td>
</tr>
<tr>
<td>3 Vertical Wall Stand</td>
<td>600</td>
<td>600</td>
<td>2000</td>
<td>120</td>
</tr>
<tr>
<td>4 Generator</td>
<td>497</td>
<td>400</td>
<td>485</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 4.1: Example of floor-mounted general X-ray unit with integrated table and X-ray tube
A chest stand or chest bucky

4.42 Typically, these devices are used for acquiring chest X-ray films and undertaking lateral exposures with the patient either standing or seated. They are installed in the majority of general X-ray rooms. The chest stand will usually be installed close to the wall of the examination room and comprises a vertical frame or column which can be attached to the ceiling, floor or wall depending on model and design, together with a cassette holder or bucky. The cassette holders are approximately 800mm x 750mm x 200mm when assembled, and can easily hold a 43cm x 35cm radiographic or CR cassette. Some vertical buckies require a power supply for an oscillating grid and AEC devices that are incorporated into the overall design of the system. In some instances, passive vertical chest stands may be utilised which do not incorporate these items and do not require electrical power.

4.43 Separate chest stands are available for adults and small children and may need to be installed simultaneously in the same general X-ray room.

4.44 For neonates and small children, special devices may need to be stored within the room to permit chest radiography to be undertaken. This will probably only apply in specialist paediatric centres.

4.45 Within a DGH diagnostic imaging department, a single smaller passive chest stand for paediatric patients should be installed in at least one X-ray room. Additional units may be required, depending on patient throughput.

4.46 Some units are arranged so that the cassette holders or buckies can be rotated through 90° and moved to a horizontal position for the examination of the extremities. Space should be allowed to permit the full range of movement of these devices and for radiographic exposures of patients either standing or seated.

4.47 The same X-ray tube, either floor or ceiling-mounted, is used for acquiring the radiographs at both the table and chest bucky in cases where both a table and a chest stand are installed in the same examination room. The positioning of the chest stand in relation to the patient table will depend on the size of the room, the type of mounting used to support the X-ray tube and the X-ray tube’s range of movement.

4.48 For floor-mounted devices where the X-ray tube support is integrated with the patient table, the central axis of the vertical bucky needs to be aligned with the central axis of the table bucky. It is advised that a minimum distance of 2m is left between the base of the patient table and the face of the chest bucky.

4.49 Where room sizes permit, the positioning of the chest bucky in relation to ceiling-mounted X-ray tubes is, for ease of access, customarily offset from the centre axis of the patient table. For further information on ceiling suspensions refer to Appendix 2: Engineering requirements, paragraphs 2.25 to 2.28.
X-ray generator and documentation cabinets

4.50 Two floor-mounted cabinets are usually installed within the general X-ray room, the first containing the kilo-voltage, high frequency generator equipment used to power the X-ray tube and the second containing the equipment manuals, which require to be stored within the X-ray room.

4.51 In some set-ups the generator may be installed underneath the X-ray table and this may be ideal where space is limited. Where rooms are planned back to back, divided by a lead screen instead of a solid structure, one generator could provide power to both X-ray tubes, thus allowing some space saving.

Figure 4.2 Example of vertical bucky unit primarily for undertaking chest radiograph

Image supplied by Siemens Medical Solutions

4.52 Emergency stop switches should be located close to the patient table in the examination room and within easy reach of the operator, in the control area, standing at the X-ray system control unit. Where the operator is not adjacent to the table, the switch should be located at a suitable point enabling the operator to reach it without first passing the cause of the problem.
Non-specific general fixtures and fittings

4.53 Other more general fixtures and fittings will include the following:

- wall-mounted piped oxygen and medical vacuum points. These should be provided within the examination area wherever the examination of seriously ill patients is envisaged, not within the control area. Anaesthetic gas points and AGSS are not required in general purpose X-ray examination rooms;

- clinical hand-washing facilities within the examination area. More extensive scrub-up facilities are not usually provided in general purpose X-ray rooms;

- shelf and cupboard storage space for patient immobilisation devices, sundry items of QA equipment and other general medical supplies including linen. Storage of controlled drugs will not be required;

- wall-mounted hooks or hangers, for one or two lead aprons and other protective equipment such as lead-lined gloves. For general X-ray suites only, these should be located in the examination room;

- a maximum of two wall-mounted X-ray viewers within the examination area even if the hospital is no longer using conventional X-ray film. These will still be required as there may be a need to review old films or those from other hospitals;

- ‘pat-slide’ patient transfer equipment;

- control console fittings; as described in paragraphs 4.54 to 4.62;

- mobile radiation protection lead-lined screens, which permit patients to be accompanied during their examinations. These are typically 2m high when in use and are height adjustable for ease of storage and transportation. They are similar in appearance to the radiation protection screens used to shield the control area.

Control area

4.54 X-ray exposure settings, initiation of the X-ray examination and other parameters are typically set using a control console. This console is usually located behind a 0.5/0.5 opaque/lead glass radiation-proof screen, forming a separate control area within the general purpose X-ray examination room.

4.55 The control console should be placed behind a radiation-proof screen. This area is known as a control cubicle. The cubicle must provide radiation protection for everyone who may be present during a radiological examination, including the radiographer/technologist at the control console and other staff and carers or relatives accompanying the patient. It may also provide protection for access into an adjoining processing area. If the screen is located in front of the access to the processing facilities and fully protects the opening, a radiation-protected door need not be provided, subject to RPA advice. However a lightweight door may be needed for auditory and/or visual privacy.
4.56 The radiation-proof screen should have a lower section of solid construction to a maximum height of 1100mm with an upper section of radiation-proof lead glass, which allows an unimpeded view of the patient at all times. The total height of the screen should be not less than 2m from the finished floor level. The screen will be configured to allow easy access from the examination area and must not incorporate internal doors. Horizontal or diagonal bracing struts may be required to support the head of the screen. The degree of radiation protection required can vary with circumstances. It is therefore essential to seek the advice of the RPA on this aspect. However, for general X-ray rooms this usually equates to 2mm of lead equivalent at energies of 150kV.

4.57 A full-width worktop is normally installed in conjunction with the radiation shielding screen, on which the control console may be mounted. Alternatively, some X-ray control consoles for general rooms may be supplied as integrated floor standing units for which space provision will need to be made. Vertical racking should be provided underneath the worktop for X-ray cassettes, up to 43cm x 35cm, and radiographic anti-scatter grids. The grids are approximately the same size.

4.58 Wall-mounted electrical distribution panels, main on/off switches and an emergency stop button will need to be provided in the control area. The emergency stop button should be located adjacent to the exit to the room.

4.59 The screen should be positioned relative to the patient table and vertical buckies to offer a good view of the patient when undergoing an examination.

4.60 Additional space should be allocated within the control area for the location of a radiology management or information system computer, a bar code reader and a printer, to allow the printing or inputting of patient information.

4.61 During an examination there may be up to two radiography staff present in the control area, possibly accompanied by other people.

4.62 The control console has the full range of controls and facilities necessary to provide the radiological exposure factors for the equipment with which it is associated. Control consoles vary considerably both in size and weight. Modern designs tend to reduce the overall dimension and weight of the control console by housing the more bulky elements in separate electronic equipment racks combined within the generator in a single cabinet. The cabinet is normally sited within the examination room.

CR option

4.63 A small CR plate reader (1m³ approximately) can be installed within the control area, rather than within an adjacent processing area. In this instance the review and processing of images may take place within the control or examination area of the general X-ray room but printing, reporting and archiving will take place elsewhere. The general X-ray room and the processing area should be adjacent as images may need to be laser printed. A back-up system should be available in case the unit breaks down or requires routine maintenance.
4.64 In addition to the items described above, space will be required for the CR plate reader, a review workstation and related working areas.

DR option

4.65 For DR, the control and setting of X-ray parameters and review of images is undertaken using a single computer workstation incorporating a 54cm or larger monitor. The images are automatically acquired using the digital detectors integrated into the unit, which will be housed in the examination room, and the computers process the images. The examination room must be directly adjacent to the processing area as the inflexibility of DR requires the use of CR or conventional film processing for non-bucky work. A back-up system is also required in case the DR system breaks down or parts of the system are undergoing routine maintenance.

4.66 The design of the X-ray tube and associated digital detector are completely different from conventional X-ray tube design and installation. Figure 4.1 shows a typical unit.

Changing cubicles

4.67 Storage space, adjacent to the changing facilities, will be needed for clean gowns. Linen skips/bins for the disposal of used gowns should be conveniently located within the department.

4.68 Patient changing facilities must be provided close to the general X-ray room. The following alternatives should be considered:

- individual changing cubicles adjoining the examination room and opening directly on to it;
- changing cubicles grouped together close to but not adjoining the examination rooms and combined with a sub-waiting area in which patients will wait, already changed, prior to being escorted into the X-ray room.

4.69 Individual changing cubicles within the X-ray room provide advantages in terms of patient privacy and dignity and may achieve greater security of the patient’s belongings. This arrangement can also achieve faster patient throughput by reducing radiographer/technologist movements. A typical layout will allow two to three cubicles to serve a single examination room.

4.70 Cubicles should have lockable inner and outer doors. The inner door must only be controlled from the X-ray room by the use of a thumb turn lock or similar device. This door must also be designed to provide protection from ionising radiation. The provision of individual changing cubicles may result in higher capital costs. A reduced extent of wall area will be available in the X-ray room for equipment cabinets and for wall-mounted diagnostic and other equipment. Each cubicle may also need to be fitted with patient/nurse call buttons.

4.71 Where changing cubicles are grouped together close to but not adjoining the examination rooms, cubicles may be of simple construction and cubicle access
will be by individual doorway or curtain. After changing, the patient’s belongings may be left in the cubicles if they can be maintained securely, or patients may place their belongings in baskets which they can carry into the examination room. In this latter instance, changing cubicles can be used more intensively, thus reducing the overall number required.

4.72 Grouped changing cubicles need an increased sub-waiting area and may also involve a supervised secure storage location if the bags or baskets are not to be taken into the diagnostic rooms.

4.73 At least one in twenty of the cubicles provided must be sized to allow wheelchair access and assisted changing.

4.74 Review of examination, patient waiting and changing times suggests that two general cubicles and one assisted or wheelchair access cubicle per general radiographic examination room are required. Where two or more general X-ray radiographic rooms are grouped together or the use of the ‘shopping basket approach’ is made, then some economies of scale can be achieved.

4.75 This approximation must not be applied to other modalities or other types of X-ray rooms such as fluoroscopy/interventional suites. Their changing requirements are described elsewhere in this document.

Sub-waiting areas

4.76 The general character of waiting areas is described in Section 15: Ancillary patient accommodation.

4.77 Three seats should be provided per changing cubicle within the sub-waiting area. This should be increased to five if the shopping basket approach is used.

4.78 At least one WC suitable for people with disabilities must be provided within 45m of the sub-waiting area. Drinking water should be provided for patients and relatives.

4.79 Ideally, workflow should be planned so that in-patients are transferred from the wards directly to the X-ray examination room with no waiting involved. In practice, this is difficult to achieve and therefore provision will need to be made for such patients to wait outside the examination room in reasonable privacy and dignity. A locally widened area of corridor or bed bay provision, with suitable screening should be provided. Similar provision for patients on trolleys may be required if one or more of the general X-ray rooms serve an A&E capacity. This may take the form of a holding area.
Unique operational requirements and facilities – special cases

Trauma X-ray imaging equipment and special aspects of room design – DGH level

4.80 Reference should be made to HBN/SHPN 22: *Accident and emergency department in an acute general hospital, Supplement 1: Trauma care and minor injury.*

4.81 At least two X-ray rooms will be required to support an A&E department, to cater for downtime and maintenance. The actual number required will depend on the size of the hospital, operational requirements, workflow and the catchment population served. Two models for the provision of general X-ray services in support of a wide range of A&E examinations are described below:

Within the A&E Department

4.82 General X-ray examination rooms, with their own separate processing and reviewing area, may be provided within the A&E department, distinct from a separate diagnostic imaging department. Such facilities will be similar to general X-ray rooms, but will be designed to allow easy and rapid movement of patients on trolleys and beds into and within the examination room. It may not always be possible to transfer the patient to the X-ray table, so space will be required for the X-ray to be acquired with the patient remaining on a trolley or bed. The radiographer/technologist may place the trolley or bed in a variety of different positions in order to acquire appropriate radiographic projections and will need sufficient working space to accomplish this task.

4.83 Additional accommodation within the A&E department supporting such X-ray facilities may include:

- processing facilities as described above. CR has a significant advantage in respect of image post-processing, thereby minimising the number of retakes required. For this reason, the use of CR is increasing rapidly in A&E;
- a darkroom, if conventional film processing is used;
- staff rest room for radiographers/technologists and overnight on-call accommodation, which may be shared with other A&E staff;
- a reception area and office facilities, which may be shared with the main A&E department;
- a patients’ sub-waiting area, which needs to accommodate at least three patients on trolleys and six seated patients;
- holding area for patients, particularly those from A&E or where the X-ray room is integrated within the A&E unit.

4.84 The advantages of this approach are:

- immediate 24-hour A&E access to X-ray facilities;
improved security arrangements within the main diagnostic imaging department as most of the department can now be closed outwith working hours. The exception in this regard is CT which can usefully be located close to A&E for 24 hour availability;

improved personal security for X-ray imaging staff.

4.85 The major disadvantages of this approach are the potential duplication and under-utilisation of X-ray equipment, processing facilities and the space needed to accommodate them. However, this may be reduced to some extent by using these A&E X-ray facilities to support related out-patient activities such as fracture clinics, which will then need to be located near to the A&E department.

Within the diagnostic imaging department

4.86 Alternatively, general X-ray facilities serving A&E may be integrated with the diagnostic imaging department, but directly accessible from the A&E department. In this case the A&E and diagnostic imaging departments must be planned adjacent to each other. Within the diagnostic imaging department, the general X-ray rooms and CT will need to be sited as close as possible to the A&E department, whilst taking into account other planning considerations, such as relationship to the fracture clinic.

4.87 The examination rooms will be used for the whole range of general X-ray examinations including A&E applications and as such the design of the rooms should reflect the characteristics mentioned above.

4.88 In addition, a holding area should be provided for seriously ill A&E patients as described in paragraph 4.83 above.

4.89 Appropriate arrangements should be made for 24-hour access to the general X-ray facilities supporting A&E, including CT and processing areas. Security must be maintained for the remainder of the diagnostic imaging department, through the provision of locked doors and barriers. Arrangements, possibly including CCTV, will be needed to ensure the personal security of radiography staff who may be working alone.

4.90 The advantages of this approach are good utilisation of equipment space and rooms with or little or no duplication of facilities. The main disadvantage is restricted access to the facilities for patients attending out-patient appointments during times of emergencies. This may have the effect of increasing the waiting times for the examination of these patients.

Trauma imaging centres at tertiary level and larger DGHs

4.91 With the advent of Advanced Trauma Life Support (ATLS) mechanisms, departments in larger hospitals are adopting American models of care in trauma centres utilising specialist equipment policies and rules to improve care for seriously injured patients. To facilitate this new practice, emergency room design has to change considerably. The new designs combine trauma and imaging treatment facilities.
4.92 The trauma imaging and treatment facility should allow for poly-traumatised or severely injured patients to be stabilised and examined according to ATLS guidelines, which include the use of diagnostic imaging within 20 minutes of arrival at the hospital.

4.93 X-ray CT is heavily used in the examination of trauma patients. The trauma treatment and imaging room should be located close to the CT suite, which, in large hospitals, may be dedicated to A&E examinations.

4.94 The facility may undertake 5000 to 6000 patient examinations per annum. The majority will be A&E patients, but this number may also include planned orthopaedic attendance and all ‘out-of-hours’ attendances. It is expected that, on average, the trauma imaging centre will treat at least one to two poly-traumatised patients per annum from road traffic accidents (RTAs) and other emergency situations. As it is likely that these incidents will involve more than one patient, the trauma imaging and treatment area should take on a multi-bay environment design and allow for the treatment and imaging of a minimum of four patients.

4.95 The combined trauma treatment and imaging room will have multidisciplinary staff and consideration needs to be given to the requirements of all the team members present who may be caring for the patient. Some of these requirements may conflict and a compromise may have to be reached in planning and design.

Multi-bay environment

4.96 In a multi-bay environment, the individual spaces should be divided by mobile X-ray shielded lead screens, part of which should incorporate lead glass. These screens should be at least 2500mm high and 4000mm wide. An example of this set-up is shown in Figure 4.3. The screens should offer a high degree of construction radiation protection of approximately 2.5mm of lead equivalent at energies of 150kV. This level of protection may allow the clinical trauma team to make use of mobile CT scanners. The introduction of CT scanners may require close attention to systems of work and the requirements of the Ionising Radiations Regulations (IRR) 1999, all of which may impact on the design of the facility. The introduction of CT scanners may be considered necessary where there is no space to provide a dedicated CT facility. The exact requirements should be discussed with a Radiation Protection Advisor (RPA).

4.97 Alternatively, a multi-bay environment could be provided by the use of half-length partition walls. These will also need to encompass radiation protection in their design by the use of lead ply or barium plaster to provide radiation protection to the standard outlined above. The fixed partition walls should be at least 4000mm wide when measured from the adjacent wall to the centre of the room and at least 2500mm high.

4.98 The X-ray screens or fixed partition walls should include storage for needles, dressings and other small clinical items, which are needed on hand when treating the patient. As space is at a premium in these bays, all equipment should be wall or ceiling-mounted. Space should be allowed at the head of each
bed for a large/deep shelf for physiological monitoring equipment. Piped oxygen and vacuum anaesthetic services, multiple power points and at least one twin wall-mounted X-ray viewing box will also be required at each bay. If the X-ray images are acquired digitally and a suitable network is in place, additional space may be needed for a dual monitor computer workstation.

4.99 The multi-bay area should be equipped with local mobile screens for patient privacy, ceiling or wall-mounted drip hanger bars, a wash hand basin and a central adjustable ceiling or wall-mounted examination lamp. Space should be left at the end of screens to allow staff to move easily between bays. For protection during X-ray examinations, staff will wear lead-lined aprons, possibly coupled with sterile theatre gowns. These aprons should be kept close to the entrance to the multi-bay area either outside or inside the room, depending on local policies. In some cases it may be necessary to mark off areas of the room to protect members of staff who are not wearing lead-lined aprons. This step should only be taken following consultation with the RPA.

4.100 The bays should be designed to allow up to six members of staff to access the patient at any one time. Three or more additional persons may be present to assist in caring for the patient.

4.101 The patient trolleys will be of low X-ray attenuation design and incorporate horizontally-mounted cassette holders for anterior/posterior or posterior/anterior X-ray views. In essence, the trolleys should meet the requirements of surgeons, anaesthetists, nurses and radiographers/technologists, who will make very different demands of the equipment.

4.102 Space should be allowed at the sides of the patient for a separate mobile trolley, incorporating an adjustable hinged fold-up cassette holder, used to facilitate lateral X-ray views.

Imaging equipment

4.103 A single ceiling-mounted mobile X-ray unit can be used to image all the patients who may be brought into the integrated treatment and imaging centre. An example of such a unit is shown in Figure 4.4. The X-ray unit should be mounted on tracks that allow the unit to cover all the bays within the combined trauma treatment and imaging room, and permit a full range of lateral and vertical X-ray examination projections. This may be achieved, as demonstrated in Figure 4.4, by locating the unit on central twin tracks and providing an extensible/adjustable articulated and telescopic arm. The arm can then be extended from the track position into each patient bay. The engineering requirements are similar to those for a conventional ceiling suspended X-ray tube, but the overall track length may be longer. The design of the room and the equipment should also minimise potential collisions between the X-ray equipment and other ceiling suspended equipment.

4.104 The positioning of generators and control panels is very problematic in multi-bay emergency trauma imaging and treatment rooms. Consideration should therefore be given to providing maximum length high-tension cables, using
multi-exposure switches or control panels coupled with safety interlocking facilities or trolley-mounted remote control units.

4.105 The use of a mobile ultrasound unit is common, particularly where patients are being treated for abdominal trauma. A mobile radiographic unit may be used in place of a ceiling-suspended one as a standby measure when the main X-ray tube is being repaired, is undergoing routine maintenance or has broken down.

Image development processing

4.106 Images acquired in the trauma treatment and imaging room will need to be developed in a dedicated image processing facility. The design of the processing facility will depend on the imaging approach. The use of CR may be advantageous in this regard for the reasons described in paragraph 3.93. The processing room should be sized to support the number of bays present and the requirements of one bay would equate to that of a single general X-ray room. The processing area should be located directly adjacent to the combined trauma treatment and imaging room.

Shared facilities

4.107 Shared facilities with the main A&E department could include:

- stainless steel scrub-up troughs to the number required;
- storage space/worktops;
- clinical wash-hand basins;
- space for parking mobile ultrasound units;
- lead apron storage on mobile racks;
- trauma room monitored by CCTV camera(s);
- staff changing and showering facilities;
- office workspace;
- sub-divided waiting room space for relatives and carers of patients undergoing treatment.

Mobile radiographic systems

Introduction

4.108 X-ray examinations may be undertaken using small self-contained mobile X-ray units, which only require a standard one-phase power supply. They are used for acquiring X-rays on wards and in specialist areas such as ITU and CCU. They may also be used with a fixed table in very small departments and hospitals. These units are completely self-contained, with the X-ray tube mounted on an articulating arm, which allows for a number of projections. Images acquired from the use of these systems can be processed close to the ward, but more often, the cassettes are taken back to the processing area in the main department.
Potential challenges

4.109 Mobile X-ray units, by their very nature, are distributed to various locations around the hospital. This can give rise to problems when servicing these units and undertaking QA procedures. Imaging managers should be aware that undertaking these necessary tasks at remote locations could create radiation safety hazards for both patients and staff and could violate IRR 1999 with respect to the Health and Safety at Work etc Act 1974. Additionally, service companies and medical physicists, who are unable to find units or who have to wait for safe working areas to be identified, may charge for the extra time.

4.110 Engineers, physicists or radiographers/technologists repairing or checking units, either from an external service provider or from an internal group, require a safe working environment to effect a repair or QA procedure. There are two main reasons why this is necessary:

- during a repair, covers may be removed and high voltage components exposed. This will represent a hazard to hospital employees, patients and members of the public if a repair is made at the mobile’s normal location, which may be a corridor or close to a ward area;

- by their nature, almost all repairs or QA checks will require an X-ray exposure to be made either as part of the repair or as a functional test. Any exposure during a test or repair must be made in a controlled area under IRR 1999. Any employer or department manager knowingly allowing exposures to be made in public areas would be in breach of their duties under IRR 1999.

Figure 4.3: Example of a multi-bay layout for major A&E trauma unit in a tertiary referral centre
Image supplied by Royal London Hospital
Methods for overcoming challenges

4.111 The following guidance is given so that the issues described above can be minimised.

4.112 Each mobile unit must be clearly identified with its own individual marking. A location board or some other tracking method within the department should be used to ensure that all staff can locate each mobile X-ray unit.

4.113 Faults with units should be logged, including details of the problem and the name of the person who identified the issue. The tracking device should identify faulty units.

4.114 When an operator identifies a fault on a unit or it requires a periodical QA test, it should be moved to a location that has been identified as being a controlled area under IRR 1999. This area would be within the X-ray department and could be an X-ray room or even a temporary controlled area within a ward. In the latter case the physicist or engineer would be responsible for ensuring that there was no unauthorised entry while an exposure was being made.

4.115 If the unit is being repaired and it is not possible to move the mobile X-ray unit, the attending engineer should be escorted to the unit, with a senior radiographer/technologist or medical physicist supervising the repair activity. Consideration should always be given to engineers working on systems in remote locations, as these employees should not be working on systems unsupervised, in case an accident should occur. By their very nature, mobile X-ray sets are high electrical voltage units. Battery powered units have high voltage present even when the system is turned off. It is also not desirable to
have contractors, who may not be correctly identified to members of staff, working on or moving X-ray units unsupervised in locations remote from the imaging department.

4.116 QA procedures should be undertaken in a radiologically-protected room. Medical physicists and radiographers/technologists should co-ordinate these QA procedures with the superintendent radiographers/technologists or imaging services manager.

4.117 Repairs, servicing and QA of mobile X-ray units should always be made in a location that is both a radiation-controlled area and a supervised area such that engineers or medical physicists are not working alone. Reference should be made to both Health and Safety regulations and IRR 1999. Most engineers will complete a repair by making a functional test of the unit and this will invariably mean an X-ray exposure. Virtually all QA procedures will involve making X-ray exposures and these should be undertaken in a suitable area complying with IRR 1999.

Skull X-ray systems and appropriate room adaptations

4.118 The use of skull radiography has almost been replaced in the UK by the use of X-ray CT. The majority of referrals are from patients who may have been admitted from A&E. The number of radiographers/technologists who have received training and are able to maintain competence in this area is decreasing due to the scarcity of units and low throughput. Where it is suspected that the patient may have internal injuries as the result of a head trauma, CT allows the clinician or radiologist to make the diagnosis with much greater certainty.

4.119 Some skull radiography is still undertaken using general X-ray tubes. Those used in skull radiography have higher heat capacities and are able to image at much higher resolutions. The ergonomics of these devices permit a number of projections and views, which may not be possible with standard general X-ray equipment.

4.120 Skull units may be either floor or ceiling-mounted devices but, in the majority of cases, are of isocentric design. Ceiling supported skull units are not usually mounted on mobile ceiling tracks. The X-ray tube and cassette-holder are mounted on C-arms diametrically opposing each other. A number of movements are possible for the C-arm to allow the radiographer/technologist to achieve a number of radiographic projections.

4.121 During the examination the patient may be lying, supported by an appropriate headrest, on the general X-ray table or sitting on a specialised chair. In some instances, where a specialist table is not provided, it is an advantage to site the skull X-ray unit close to and parallel to one end of the general X-ray table. In all cases the movements of the skull X-ray unit should be integrated with those of the general X-ray tube to avoid potential collisions and damage to the equipment. To allow for the required projections, space will be needed for the radiographer/technologist to operate the skull X-ray unit over its full range of movement. This should permit the radiographers/technologists to move easily on both sides of the equipment.
4.122 In the majority of cases, it will be appropriate to install one of these units in a general radiographic room, as this will save space and equipment. A single generator and control panel can be used to power and control both the skull and general X-ray units. It may be particularly appropriate given that virtually all referrals will be from A&E. Thus the rooms can be for full or partial A&E use as described earlier in this section.

4.123 In some instances, such as specialist tertiary centre trauma imaging units, throughput and patient numbers may justify the provision of a skull unit in a separate imaging room. In this case dedicated patient support will be provided with the unit which will be of similar design to that described for general X-ray systems. Enough space should be left around the couch for the radiographer/technologist to set up a wide range of radiographic projections.

4.124 Skull X-ray units are usually supplied with a number of X-ray field alignment fittings, which are constructed of lead and attached to the front of the X-ray tube. Storage for these devices needs to be provided within the X-ray examination room.

4.125 Ceiling suspended skull X-ray tubes will usually require specialist fittings in the form of a dedicated plate fitted directly to the underside of the ceiling slab.

4.126 This option will increase the space requirements within a general X-ray room. See Appendix 1: Example plans.
5. Facilities for universal fluoroscopy and remote fluoroscopy systems

Background

5.1 These units are used to acquire moving images in almost real time to examine anatomy and physiological processes. As in general X-ray radiography, an X-ray tube is used in the image generation system. An X-ray image intensifier is used as the receptor device and, working in conjunction with a TV camera, is capable of acquiring analogue or digital moving images in real time. The images are then viewed on monitors, located in the examination and control areas. The use of this device allows images to be acquired of both human physiology and anatomy. Diagnostic investigations using an image intensifier will usually be carried out in conjunction with contrast media for a range of investigations as described below.

5.2 X-ray fluoroscopy, also known as screening, provides continuous real-time imaging, not all of which is recorded. However, still or moving images may be captured to form a record of the examination. In all examinations fluorography will be used in conjunction with fluoroscopy. Refer to Appendix 3: Glossary for a description of fluoroscopy and fluorography.

5.3 According to a fixed protocol, the operator (either a radiologist or radiographer/technologist) may record the images from the intensifier using digital acquisition methods on dedicated apparatus. This process is called X-ray fluorography or digital spot imaging by some manufacturers and many images may be acquired per second (up to 50 fps) as a movie or still images. See Appendix 3: Glossary for further details.

5.4 This section focuses on the built environment requirements for universal and remote X-ray fluoroscopy/fluorography diagnostic imaging equipment. The installation and design requirements for these units are similar and thus described under the same section. This should not be confused with facilities required for multi-angular C-arm equipment used in vascular and non-vascular imaging and interventional work.

5.5 The primary difference between universal and remote equipment relates to how it is operated. Universal fluoroscopy/fluorography equipment is operated by the radiographer/technologist or radiologist at the side of the patient using controls mounted near the patient couch. All movements of the equipment will be controlled together with fluoroscopic and fluorographic exposures. For remote control equipment members of staff will be present in the control area during the procedure and will not usually enter the main part of the examination room during exposure of the X-ray tube. Better patient compliance during an examination is usually achieved with universal fluoroscopy equipment and thus this is more commonly procured for the types of procedures described below.
Clinical and operational objectives for universal and remote fluoroscopy/fluorography imaging systems

Contrast media – general introduction

5.6 Contrast media are chemical substances, which are manufactured to be relatively non-toxic for the majority of patients undergoing diagnostic imaging examinations. Modern radiology makes use of contrast media with all imaging modalities including MRI, ultrasound and CT. Contrast media are administered to enhance and improve the contrast characteristics of the images acquired in diagnostic imaging examinations. In some instances, the use of contrast media permits the imaging of anatomy or physiology not normally seen in standard imaging procedures. Contrast media, which may require preparation before being used, can be administered orally, intravenously and rectally, particularly for barium enema studies. Contrast media are heavily used throughout virtually all procedures involving the use of X-ray fluoroscopy.

5.7 Two of the most common contrast substances in general use are iodine, for imaging the systemic circulation, and barium, for imaging the digestive tract. The timing of the delivery of the contrast media in conjunction with the X-ray imaging can be critical to the successful completion of the study. Such examinations are usually achieved with the use of integrated automated injectors and these are described below. In a few instances the patient may suffer an allergic reaction to the administration of the contrast media either during or just after the procedure. In the majority of cases patients may be asked to remain within the waiting area for a period of time following the examination and may be given further information when leaving the hospital.

Barium contrast procedures

5.8 Contrast media is used to acquire physiological and anatomical images of the whole human digestive tract from the oesophagus to the rectum. The procedures are generally undertaken using barium compounds as the main imaging contrast media but non-ionic contrast media is often used, e.g. in post operation situations. Studies include barium enemas, swallows and meals, and ‘follow-throughs’. These are briefly described below.

Barium enemas

5.9 One of the most important clinical indications for undertaking barium enemas relates to the presence of gastro-intestinal polyps, which in the long run may cause colorectal cancer. Consideration is being given to providing a screening programme for at risk individuals.

5.10 Following appropriate bowel preparation, the majority of the upper and the whole of the lower intestines are filled with barium via a rectal catheter. X-ray fluoroscopy is used to monitor the progress of the contrast media as it moves through the lower portion of the digestive tract. Tilting the patient on the integrated patient table, X-ray tube and image intensifier may facilitate the movement of the barium compound within the intestine. Images are acquired
using the digital fluorographic facilities of the equipment at discrete intervals throughout the study to demonstrate pathology or a normal study. This part of the examination may take five to ten minutes and is usually followed by injection of air to enable ‘double contrast’ studies to be made. The injection of air enables the barium to stick to the inner lining of the intestine so that the intestine wall can be imaged. The patient may then go to a conveniently adjacent WC, to evacuate some of the barium, after which further digital fluorographic images may be acquired. Following the examination the patient may need to rest before going home, or visit a WC to evacuate any further barium that may remain in the lower intestine.

5.11 Parts of the procedure require lateral exposures. The design of traditional or conventional screening equipment makes this impossible and therefore the main equipment must be supplemented by a ceiling-suspended X-ray tube. The images are acquired using conventional or CR radiographic technologies as described in Section 3: Imaging approach. The radiographer/technologist may need to place the X-ray tube either side of the couch to achieve this objective and the room should be designed to allow for this possibility. Many remote controlled units have a built-in facility to obtain laterals, so a ceiling-mounted tube would be required.

Barium swallows and follow-throughs

5.12 This diagnostic test is used for problems, such as difficulties in swallowing in the upper gastrointestinal tract (throat and oesophagus). The patient swallows the barium contrast media whilst standing on the foot-plate of the tilted table. Images are acquired as the contrast media is swallowed and moves through the throat and oesophagus. This examination may be combined with a follow-through where images are acquired as the barium contrast media moves through the whole of the upper gastrointestinal system, that is, the stomach and the duodenum portion of the small intestine. The purpose of this latter part of the study is to look for problems causing symptoms such as recurrent heartburn and bleeding. This may require the patient to spend long periods in the diagnostic imaging department.

Micturating cystography

5.13 The purpose of micturating cystography is to look for renal and bladder problems, particularly those associated with obstructions, constrictions and reflux, where urine may flow back to the kidneys from the bladder during micturation.

5.14 Whilst the bladder is filled with contrast media via the urethra, the progress of the media to the bladder is examined using fluoroscopy. Images are acquired at appropriate points of the investigation with the contrast media in the bladder or while the patient is micturating. The purpose of the examination may be to look for renal reflux where the urine moves back into the kidneys from the bladder during micturation. The design problem is to ensure patient privacy during the examination and that the environment supports what can be a difficult and challenging examination for the patient and members of staff supporting the procedure.
5.15 The procedure is sometimes used for paediatric patients up to the age of two, but for the majority of paediatric patients above this age it has been replaced by the use of radionuclide imaging. The procedure is still used extensively in some groups of adults. Additional complementary diagnostic tests may be undertaken at the same time, requiring an increase in floor area.

Post-mortem work

5.16 Fluoroscopy imaging equipment may be used to acquire X-ray images of cadavers to support post mortem work undertaken by coroners in the mortuary. These procedures will normally be undertaken outwith normal or extended working when patients are present. Special considerations in this regard will include maintaining a clean environment for patients to be examined the following day and coping with emergencies where patients may need to be examined when a cadaver is being imaged. In this regard advice should be sought from infection control staff. It is probable that the use of fluoroscopy imaging in post-mortem studies will expand. Future revisions of this guidance will include more information relating to the use of diagnostic imaging in post-mortem studies. For radiation protection reasons, the use of remote rather than universal fluoroscopy/fluorography equipment is preferred for this application.

Endoscopic Retrograde Cholangiopancreatography (ERCP)

5.17 In this imaging examination, the morphological or anatomical aspects of the pancreatic and biliary ducts are imaged. This is usually undertaken with some gastrointestinal endoscopy. However, imaging ERCPs are gradually being replaced by Magnetic Resonance Retrograde Cholangiopancreatography (MRCP) for diagnostic purposes. ERCPs are still used for interventional procedures where, for example, the objective is to place a small stent and open up a partially occluded biliary tract.

Hysterosalpingography (HSG)

5.18 This test is still considered the gold standard for demonstrating fallopian tube patency and establishing the possibility of infertility or ensuring the success of sterilization procedures. The examination involves injecting contrast agent into the fallopian tubes and imaging the resulting distribution. The nature of these examinations makes it essential to maintain patient privacy and dignity at all times. This examination has been partly replaced by hysterosalpingo contrast sonography (ultrasound) with the introduction of ultrasound compatible contrast agents and the wish to move away from an ionising radiation technique. This examination can also be performed using non-vascular interventional imaging equipment as described below.

Patient Journey

5.19 Refer to Section 3: Imaging approach, which describes patient journey aspects during processing and checking. Refer also to the forthcoming PACS supplement.
5.20 Patients may be referred for a procedure examination as out-patients by a GP, by appointment as a consequence of attending an out-patients clinic or as an in-patient transferred from the ward areas of the hospital. Out-patients will usually be attending by appointment, either directly at the diagnostic imaging department, or from another out-patient speciality clinic requiring diagnostic imaging support. A member of the administrative support staff will enter the details from the request form into the Radiology Information System, before the patient attends for his/her procedure. With the appointment confirmation the patient will be sent details of the examination together with information on preparation procedures and proscriptions.

5.21 Patients may arrive either on foot, in a wheelchair or on a trolley or bed. The entrance used by patients must allow access for King’s Fund beds with accessories such as drip stands and other monitoring equipment. The majority of patients attending for the types of procedures described above will be out-patients.

5.22 Patients will need to fully undress and change into a hospital gown. Patient privacy and dignity must be maintained at all times. Patient changing and waiting facilities are described in more detail in paragraph 5.61.

5.23 The minimum height of the X-ray table is determined by the design of the equipment. Ambulatory adults will be able to transfer themselves to the X-ray table but elderly people or people with disabilities may find it more difficult to transfer to the patient table. Steps and a Pat-slide should therefore be made available in the room. The use of a patient hoist, shared with other modalities in the department, should be considered. It may be necessary to provide other facilities to enable staff to position patients for their examination.

5.24 The majority of procedures will take between half an hour and an hour depending on complexity. These times do not include changing, preparation procedures or transfer. In some cases, for example during barium follow-up studies, the patient will have to remain in the department for the majority of the day.

5.25 A barium enema can be a very unpleasant experience. Patients may be sick and will need to use the WC immediately following the procedure. A WC with wheelchair access, incorporating a bidet and douche, should be integrated into the fluoroscopy room or sited directly adjacent to the facility.

5.26 Patients may be sedated during some procedures, with the sedatives administered before the examination. In the case of in-patients, sedatives may be administered on the ward and recovery may also take place in the ward. General anaesthetic will not normally be required except for paediatric patients and where hysterosalpingography (HSG) procedures are undertaken. In the latter case, this can be a difficult and relatively painful procedure for the patient and recovery space should be allocated. The recovery area could be shared with other X-ray fluoroscopy modalities.
5.27 For barium procedures, the patient will receive the barium whilst in the examination room. The barium mixture will be prepared either in the room or in an adjacent preparation room.

5.28 Following completion of the examination, out-patients will change to outdoor clothing and discard the gown into an appropriate receptacle. They may remain in the sub-waiting or recovery area under observation until they are deemed ready to depart. During this time the patient may need to visit a separately provided and conveniently accessible WC.

5.29 In-patients will return to the ward, possibly on a bed or trolley. Patients’ relatives will usually remain in the main waiting area during the examination.

5.30 Refer to Figures 5.1 and 5.2 for equipment examples and to Appendix 1: Example plans for conventional and remote fluoroscopy room layouts.

List of accommodation

5.31 The schedule of accommodation in support of a general screening room should be as follows:

- an examination room containing a conventional or remote U-arm/table unit, a ceiling suspended X-ray tube, ceiling- or floor-mounted monitors and possibly a vertical stand or bucky;
- a control area shielded by the use of fixed lead radiation shielding screens. This may take up a portion of the examination room or may be a separate area;
- a small area outside the examination room for storage of lead aprons;
- barium preparation facilities;
- a dirty utility/disposal area;
- a dedicated toilet, suitable for use by the disabled, directly accessible from the examination room;
- a processing area to develop the films. This could be shared with facilities to support general X-ray rooms, but the suite should be adjacent to the processing area;
- sub-waiting areas for both out-patients and, where appropriate, in-patients;
- changing cubicles for patients, one of which must be suitable for wheelchair users;
- toilets, including toilets for use by the disabled, for patients and accompanying relatives before and after the examination;
- other accommodation which may be shared with other modalities in a larger diagnostic imaging department. This is described elsewhere but listed for reference purposes;
- a porters’ base to assist with the transfer of patients to and from the wards;
• a counselling room;
• a main reception area for patients;
• a shower room for patients who have soiled themselves. The room should be sized to accommodate trolley-bound patients and located close to the fluoroscopy room;
• two-bedded recovery area for observation of patients following certain types of examinations, particularly HSGs.

Figure 5.1: Example dimensions for a conventional/universal fluoroscopy unit

Image supplied by Siemens Medical Solutions
5.32 Paragraphs 5.32 to 5.42 focus on the installation requirements for generic equipment which have similar clinical applications and installation requirements. Subtle differences are noted.

5.33 The image intensifier and X-ray tube are mounted in a fixed U-arm relationship above and below the patient table. According to the particular equipment, the image intensifier may be mounted above the patient couch with the X-ray tube below or vice versa. The mode of operation will be determined by the type of equipment used. Where the image intensifier is mounted under the table, the unit will, in the majority of circumstances, be operated from the control area. Where it is mounted above the table, the radiographer/technologist will operate the unit at the side of the table using controls mounted on the U-arm. These will be referred to as remote and conventional fluoroscopy units respectively in the text below.
5.34 A device known as an explorator is used to assist in the imaging procedure by supporting the image intensifier, incorporating movement and imaging controls, together with an X-ray cassette bucky and radiation protection in the form of flexible lead-lined strips. The explorator is bulky and may inhibit the use of conventional and remote fluoroscopy in certain cases, such as small paediatrics, who may be slightly intimidated, as they will be enveloped by the explorator during the examination. For such patients barium studies may be undertaken using multi-angular C-arm equipment.

5.35 For some examinations, such as lateral exposures, the combined X-ray tube and image intensifier does not support the intended radiographic projection. General radiography will still be required and a ceiling suspended X-ray tube must therefore be installed.

5.36 The table is integrated with the U-arm, which is floor-mounted and served by a combination of surface-mounted and under-floor cable trunking. Viewing monitors can be either floor-mounted on trolleys or mobile stands, or ceiling-mounted on mobile tracks. It is customary to provide two monitors in the X-ray room and a single review monitor in the control area. It may be better to allow for trolley-mounted monitors, as the alternative ceiling-mounted devices may conflict and collide with the ceiling-suspended X-ray tube mentioned above. If trolley-mounted devices are used, care should be taken with loose or flexible cabling.
5.37 The movements of the integrated table and U-arm assembly for both remote and conventional fluoroscopy units are motorised and the whole assembly can be tilted 90° in each direction, so that the patient may be rotated to a standing position during part of the examination. This is sometimes known as Trendelenburg tilt. In addition, the table and the U-arm can be moved longitudinally and laterally, independently of each other, in order, for example, to allow the imaging of different segments of the gastrointestinal tract. Space for this range of movement must be allowed at both ends of the table.

5.38 The ceiling-suspended X-ray tube is normally parked to one side of the room and cannot be activated or used until the U-arm is parked and vice versa. The U-arm can be parked behind the table, and sufficient space should be provided to facilitate this operation. A single generator cabinet located within the examination room will be used to power both X-ray tubes.

5.39 One of the important clinical uses of the ceiling-suspended X-ray tube is to obtain lateral or decubitus exposures with the patient lying on the couch during barium enema examinations. Space should therefore be provided either side of the couch to allow the radiographer/technologist to obtain lateral projections from either side of the patient. As a minimum, enough space should be provided to allow the radiographer/technologist to achieve a projection distance of at least 1000mm, measured from the centre of the X-ray tube to a cassette placed the other side of the X-ray tube. The cassette will be supported by a lateral cassette holder, which is integrated with the main equipment. In some room designs, the position of the control area may conflict with this objective. It is advised that where this may occur, at least 1750mm be left between the edge of the table and the lead-lined screens forming the control area.

5.40 In the majority of installations, space should be allowed for four cabinets in total, comprising one for the manuals, one for the DSI or fluorography, and two for the generator and power distribution unit. The DSI cabinet may be located in the control area, but space considerations may dictate that the others are stored in the main examination area.

5.41 Although not required for fluoroscopy/fluorography procedures, a chest bucky may be installed in the screening room to back up the facilities already located in other general X-ray rooms. In small hospitals, where the department may only consist of one X-ray room, this type of room may be equipped to provide for a wide range of radiographic and fluoroscopic procedures.

5.42 As an option on some types of conventional equipment, the ceiling-suspended tube may allow for tomographic examinations working with a table bucky. The design of the room, together with the installation, will need to allow for the X-ray tube to move 40° of subtended arc about the centre of the table at a distance of 1200mm.
General design features

5.43 See plans in Appendix 1: Example plans.

5.44 The room should be designed to allow the radiographer/technologist or other members of staff to see people entering the room from the main patient entrance easily.

5.45 It should be possible to lock the patient entrance doors during some procedures to ensure patient privacy. This can be achieved by the use of thumb locks to enable escape during a fire. The patient doors should open inwards to the examination room to provide radiation protection for persons entering the room inadvertently during a procedure.

5.46 There may be a requirement for a lead-lined door at the entrance to the control area depending on the designation of the area and the radiation dose present. Advice from the RPA should be sought in this matter. In the majority of cases, the lead-lined screens provide adequate radiation protection. However, it is recommended that a door, possibly of sliding type design, is provided at the entrance to the control area for patient privacy reasons, particularly when HSG and micturating cystography examinations are undertaken.

5.47 The number of staff for procedures undertaken in this area may be as many as seven persons, but this will almost certainly increase if ERCP procedures are undertaken. The people involved may include a radiographer/technologist, a radiologist, an anaesthetist, up to two assisting nurses and, where teaching functions are undertaken, up to three students or visitors.

5.48 Sufficient space should be provided at the front of the table to enable the transfer of patients from a King’s Fund bed.

5.49 Direct access is required to an adjacent WC.

Ancillary equipment

5.50 The general layout and the location of major equipment and provision of fixtures and fittings will be similar to that described for a general X-ray suite, with the exception of the items listed above and below which will necessitate a larger facility:

- the type of X-ray equipment installed: i.e. the fluoroscopy U-arm together with a ceiling-suspended X-ray tube which may be capable of tomography and may be used in conjunction with a chest stand if the suite is planned for additional applications or as a multi-use stand alone facility;
- the use of ceiling or floor-mounted monitors. Additional space will be required for floor-mounted devices;
- space for barium and patient preparation lay-up trolleys;
- storage for lead aprons and protective clothing outside the examination room, either within the control area or in an adjacent space near the patient or staff entrance;
• storage facilities for contrast media such as barium. If a separate area for barium contrast media preparation is not available, then space for this preparation should be allocated in the main examination room. The space should include storage, worktops and a stainless steel washing sink;

• increased floor loading from the floor-mounted X-ray units;

• up to five clinical staff in the examination room during barium procedures;

• space for additional endoscopy trolleys, associated equipment, video recorders, etc, and up to six clinical staff in the examination room if ERCP or other clinical procedures using endoscopes or gastroscopes are conducted in this suite. Appropriate workflow procedures should be implemented and working space allocated for the return of dirty re-usable medical devices

These procedures do not involve the use of barium contrast. X-ray fluoroscopy/fluorography is used to guide and record the position of the endoscope and any interventional procedure that may be undertaken. The majority of equipment used for endoscopic procedures will be brought in from outside the diagnostic imaging department and will be returned for preparation and sterilization.

• mobile ‘skips’ for the collection of soiled linen and other clinical equipment either for disposal of single use devices or for return to an SSD for cleaning and sterilization. The latter will only apply for re-usable medical devices;

• floor finishes, wainscoting and wall finishes resistant to splashing from barium and other contrast media, and impervious and easily cleaned;

• oxygen and vacuum should be provided in the examination room, and the use of piped anaesthetic and scavenging facilities should be considered. However, the use of mobile trolley units may be more appropriate except where high volumes of paediatric patients are examined.

The engineering requirements for screening rooms are similar but subtly different to those described for general X-ray rooms and are described in Appendix 2: Engineering requirements.

Control area

5.51 The control area will be of similar layout and construction to that for general X-ray suites, but should be longer to accommodate the additional control and monitoring equipment. Remote units may require a larger control area and a smaller examination room. For the reasons described above and because of the differences in the way the equipment is operated, universal fluoroscopy equipment may require a smaller control area and a larger examination room.

In addition to the equipment described for the general X-ray control area, space may be needed for:

• a monitor together with an imaging computer and user interface;

• possibly a video recorder and storage for blank videotapes;

• in some cases storage for CD-ROMs;
• the DSI computer cabinet if not located in the X-ray room;
• accommodation for up to four clinical staff;
• lead apron storage as described above;
• an outer door, possibly of normal construction, for reasons of patient privacy.

5.52 The control area should be designed to allow a good view of the patient through all possible movement positions of the equipment. This is of particular importance in remote fluoroscopy rooms, where the radiographer/technologist will be sitting at a control desk within the shielded part of the room.

Imaging reporting/approach

5.53 Some procedures, such as barium enemas, may be undertaken by a radiographer/technologist working to a set protocol without the presence of a radiologist. Reporting will be carried out by a radiologist to a pre-determined set of fluorographically-acquired images. Other slightly more complicated procedures will require the presence of a radiologist or other medical consultant to clinically supervise the procedure. Directly after the examination the radiographer/technologist or radiologist will review and possibly alter the contrast characteristics of the images acquired, using the imaging computer. The results will be laser printed, sent to another post-processing computer workstation, or sent to another digital archive for reporting at a later date. Further details of these options are described in Section 3: Imaging approach. Where the results are sent directly to another workstation it may be possible to integrate them with any radiographic images acquired, possibly using CR, and then save the complete study to a CD-ROM. Where this is undertaken, storage space should be provided in the control area of the fluoroscopy room to facilitate this process. The post-processing imaging workstation should be located in either a small room adjacent to the fluoroscopy imaging room or within the processing area, particularly where CR is used in preference to conventional film.

Barium preparation area

5.54 The barium will be delivered to the department in powder form in 5kg bags. By the addition of water it is made into a paste or viscous liquid by the radiographer/technologist or assisting nurse and given to the patient. For oral preparations, standard food hygiene measures will apply. Barium contrast media may be prepared within the examination room as described above or in a separately divided but directly adjacent space, if available.

Disposal of barium contrast media

5.55 Unused barium cannot be disposed of using conventional sinks and drainage. A sluice sink should be provided within a dedicated or shared dirty utility room. Other fittings in the dirty utility room should include worktops, a sink, underworktop storage space and wall-mounted shelving. Refer also to Appendix 2: Engineering requirements.
Dedicated disabled access toilet

5.56 A toilet, accessible to people with disabilities and having direct access for patients immediately following examination procedures, should be provided either opening off the examination room or off a private dedicated lobby area. This room will include a bidet and a toilet. Particular attention should be paid to the design of the drainage to minimise the risk of drain blockage by contrast media. In planning this WC, consideration should be given to providing a second door, acting as an exit, and opening to the adjacent changing cubicles. In this case, the inner door to the examination room must be lockable, under the control of the radiographer/technologist, and lead shielded for radiation protection.

Sub-waiting area

5.57 The general character of waiting areas is described in Section 15: Ancillary patient accommodation. Since patients may have to remain in this area for extended periods of time, the area should contain basic refreshment facilities such as a water fountain, a television and magazines or books. Windows and an attractive outlook should be provided.

5.58 As an indication, six seats should be provided per general or remote fluoroscopy room where the shopping basket approach is used.

5.59 At least one disabled-access WC must be provided adjacent to the sub-waiting area. This will be required by patients who may have received a barium enema and may be in the waiting area recovering from the last effects of sedation.

5.60 As an examination may last between 20 minutes and one hour, attendance by in-patients must be planned in advance and a single bed/trolley bay, capable of being screened by cubicle curtains, should be provided in the sub-waiting area.

Changing facilities

5.61 The changing cubicles should be grouped together, but not adjoining the examination rooms, and combined with a sub-waiting area in which patients will wait, already changed, prior to being escorted into the X-ray room. As an indication, two cubicles should be provided for a single general fluoroscopy room and one of these must allow for wheelchair/assisted changing. The design should be as described in the second option of paragraph 4.68.
6. Fluoroscopy equipment for vascular and non-vascular imaging and interventional procedures

Introduction

6.1 This type of fluoroscopy equipment will be suitable for a DGH that does not undertake cardiac or other specialist imaging facilities, and tertiary referral centres. This equipment will be used for a range of general vascular and non-vascular imaging and interventional procedures. Some of the clinical procedures undertaken are described below. Some of those procedures are currently performed only in specialist tertiary referral centres.

6.2 The procedures undertaken with this type of equipment have undergone radical changes in the last five to ten years because of the increase in the number of interventional radiology procedures and the use of MRI and CT to undertake angiographic imaging. The majority of procedures involve some degree of intervention. The complexity of these procedures and their invasiveness is likely to increase, therefore the suites to support these procedures should be designed, as far as possible, to meet operating theatre standards, in terms of hygiene and suite design. The requirements to meet this objective are outlined in Appendix 2: Engineering requirements. Accommodation requirements are described below.

Clinical and operational objectives

Examples of non-vascular imaging

HSG

6.3 A description of an HSG facility is given in paragraph 5.18 under universal and remote fluoroscopy/fluorography facilities.

ERCP

6.4 The majority of imaging ERCPs are undertaken using MRI, except where otherwise indicated, and are commonly known as MRCPs. X-ray fluoroscopy procedures are commonly used to support interventional ERCPs, which are described below.

Back-up facilities for barium studies

6.5 In some instances, the room could be used to undertake barium contrast studies, such as those outlined in paragraph 5.12, when the conventional or remote fluoroscopy room is being upgraded or repaired. Some paediatric patients may find the use of an over-couch explorator, as described for conventional fluoroscopy units, claustrophobic, making this type of equipment
appropriate, if a remotely controlled fluoroscopy system is not available. See paragraph 5.34.

PTC

6.6 This is described in Appendix 3: Glossary.

Examples of non-vascular intervention

Image guided biopsy work

6.7 In order to permit successful cancer treatments, it is necessary to provide a full diagnosis of the tumour type. This can only be done by histological analysis of the actual tumour cells acquired by obtaining samples from the tumour by needle biopsy intervention. In this procedure, a sample is obtained directly from the tumour by inserting a needle into the patient under imaging control. The use of real-time X-ray imaging with this type of fluoroscopy equipment should make the whole procedure safer and more efficacious, allowing the clinician to view the needle in more than one dimension. In some cases, the sample will need to be prepared for further analysis directly after the procedure, and a small amount of space may need to be allocated in the room for this operation. These procedures can sometimes be painful and the patient may be placed under sedation, local or in some cases general anaesthetic. Complications can also develop following some of the procedures, therefore patients will need to recover and be observed before leaving the hospital.

GI stenting (oesophagus, duodenal, rectal)

6.8 This procedure is undertaken when parts of the gastrointestinal system have become obstructed or occluded (stenosis), possibly as a result of another pathology. One of the common causes is the presence of cancer close to the oesophagus or abdomen, which may be pressing directly against an adjacent area of the gastrointestinal tract therefore causing an occlusion or obstruction. Where the actual cancer is too far developed to be treated, then stenting may be considered as a palliative measure to improve the patient’s quality of life.

6.9 In this procedure, the imaging unit is used to guide a hollow, metal cylindrical gauze-like but firm structure that will be placed at the stricture of the gastrointestinal system to overcome the stenosis and improve the function of the GI system. For procedures in the abdomen, the use of ultrasound imaging working in combination with the fluoroscopy unit may be considered necessary.

6.10 Further examples of non-vascular interventional procedures are:

- nephrostomy and ureteric stenting;
- biliary interventions (drain insertion, biliary stenting, stone removal);
- transjugular liver biopsy;
- transjugular intrahepatic portosystemic shunt (TIPS);
- Hickman/Tessio line insertion.
6.11 The above procedures are described in Appendix 3: Glossary under Basic descriptions of interventional radiological procedures.

Examples of vascular imaging

6.12 The majority of angiography imaging is now undertaken using Magnetic Resonance Imaging, particularly with the introduction of new technologies and the increased use of contrast media in MRI. However, some work, for example femoral and renal angiograms, is still undertaken in X-ray fluoroscopy facilities. Patients contra-indicated will still be imaged conventionally. Some patients may undergo X-ray angiography post-MRI, prior to interventional procedures.

6.13 Examples of angiography examinations are:

- venography;
- fistulogram;
- as described in Appendix 3: Glossary under Basic descriptions of interventional radiological procedures.

Examples of vascular interventions

6.14 The following are all examples of vascular interventional work carried out using this equipment:

- balloon catheter angioplasty;
- stent placement;
- IVC filter insertion;
- cardiac pacemaker insertion.

6.15 See Appendix 3: Glossary for details.

Embolisation of bleeds, tumours, aneurysms, AVMs

6.16 See Appendix 3: Glossary for details.

Patient journey

6.17 Refer to Section 3: Imaging approach for information on patient journey aspects during processing and checking. Refer also to the forthcoming PACS supplement.

6.18 Patients may be referred for an imaging or interventional procedure either as a day-case out-patient, by appointment, or as an in-patient transferred from a ward of the same or a different hospital. The latter may apply in specialist cases. Although appointments are generally made for these procedures, due to the nature of the work, patients are often referred as emergency cases. These frequently come directly from Accident & Emergency.
6.19 The majority of patients will be in-patients, although some will be undertaken on a day patient or case basis and provision for a day case ward within or adjacent to the radiology department should be considered.

6.20 A member of the administrative support staff will enter the details from the request form into the Radiology Information System, before the patient attends for a procedure. The patient or ward will be sent details of the procedure with the appointment confirmation together with information on preparation procedures and prescriptions.

6.21 The consultant radiologist undertaking the procedure will require access to general medical notes relating to the patient and will discuss them with the medical team caring for the patient. Prior to the interventional and to some imaging procedures, the radiologist will discuss the procedure with the patient and obtain written consent. In the case of in-patients, this may be undertaken on the ward. For out-patients, a consulting room or office should be located within the interventional suite or department for this purpose. An X-ray viewer or computer review station should be provided in the room to demonstrate to the patient, the problem and the intended procedure.

6.22 In-patients will have already changed into a theatre gown and will be transferred to the suite by a trolley or bed. Patients requiring some form of pre-medication will receive this on the ward. In the majority of circumstances, only a small number of patients, such as children or those requiring more complex procedures, will require a general anaesthetic (GA). In order to facilitate the induction and recovery from anaesthesia, a combined anaesthesia/recovery area should be provided.

6.23 In the majority of circumstances, procedures will be undertaken with sedation. Local anaesthetic, pain relief and anti-nausea drugs may be given prior to the procedure. This will be done either on the ward or within the interventional radiology suite, either in a patient preparation area, or within a combined preparation/recovery room as mentioned above. Sedated patients will require monitoring of blood pressure, oxygen saturation and ECG during interventional procedures, possibly using trolley-mounted monitoring equipment. Piped oxygen and vacuum services will be required within the procedure room.

6.24 Because out-patients will need to change into hospital gowns, changing facilities comprising two cubicles per procedure room should be provided. Alternatively, patients may change in the curtained cubicles within the day case ward or recovery/induction area if there is insufficient space for additional cubicles. Sub-waiting and refreshment facilities for relatives accompanying the patients will also be required.
6.25 Patients admitted for day case procedures will usually:

- be given early morning admission times;
- be booked onto morning lists to leave sufficient time for patient recovery. Patients can usually go home by late afternoon;
- have uncomplicated medical histories. For example, normal renal function and normal blood clotting is usually required;
- require diagnostic imaging with minor interventions and low complication rates;
- have inserted four or five French catheter systems, which will enable faster haemostasis;
- in some cases be subject to the use of arterial closure devices;
- be monitored and observed in the recovery bay and day-case ward post procedure so sedation can be used if required.

6.26 Valuables cannot accompany the patient into the examination for hygiene and cleanliness reasons. Lockers will therefore need to be provided for the storage of belongings.

6.27 The majority of in-patients and out-patients will be transferred to the interventional radiology room by bed or trolley, possibly having received some form of sedation or other pre-medication. A number of these patients will be quite ill and unable to walk into the examination room. The patients will be transferred from the bed or trolley to the imaging table by the use of patslides. For heavy patients, a hoist may be appropriate.

6.28 Unlike conventional diagnostic imaging, interventional procedures may take a considerable time and the length of stay will not always be predictable. Procedures may be as brief as 30 minutes or as long as three hours. An average duration of between one and one and a half hours may be appropriate when considering patient throughput. Preparation and recovery times will be additional.

6.29 Following the procedure, the patient can usually be transferred from the X-ray table onto a trolley or bed and then straight into an adjacent recovery room or area. This vacates the interventional room for cleaning and preparation for the next patient with the minimum of delay. In the case of vascular procedures the puncture site, either in an artery or vein, must be compressed for about 10 minutes, to control bleeding and reduce haematoma. After an arterial procedure, the patient must remain flat for between four and six hours to ensure the puncture site has ‘healed’ sufficiently. Once haemostasis has been achieved, the patient can be transferred to the ward, where observations will continue for several hours.

6.30 For patients who need to be mobilised more quickly or who may have blood clotting problems, several closure devices are now available. If these are used, patients can get out of bed within two to three hours. This enables cases to be more easily undertaken on a day patient basis.
List of accommodation

6.31 Accommodation required for vascular and non-vascular interventional procedures is as follows:

- an examination room containing the multi-angular X-ray projection fluoroscopy equipment;
- a control area housing the computer workstations associated with the imaging equipment;
- a small area outside the examination room for the storage of lead-lined aprons and other radiation protection equipment;
- sub-waiting areas for both out-patients and, where appropriate, in-patients;
- changing cubicles for patients. At least one must be suitable for wheelchair users;
- combined anaesthetic induction/recovery area, depending on the use of anaesthetics and local policies;
- a machine room, depending on equipment type and manufacturer;
- storage space for catheters, and sterile packs.

Other accommodation, which may be shared with other modalities in a larger diagnostic imaging department, is described elsewhere but listed here for reference purposes

- a day case recovery ward for out-patient appointments;
- a porters’ base to assist with the transfer of patients to and from the wards;
- a counselling room;
- a main reception area for patients;
- a dirty utility/disposal area;
- a clean utility area;
- a laser printing facility;
- toilets for use by the patients, accompanying relatives/carers and wheelchair users;
- scrub-up facilities.

Room and equipment descriptions

Examination room

6.32 All the imaging will be undertaken using an image intensifier combined with an X-ray source mounted on a movable multi-angular C-arm arrangement. Images will be viewed in real-time using examination room monitors as described earlier and fluorographic images can be acquired for clinical reporting reasons or to demonstrate the efficacy or success of an interventional procedure. A ceiling-
mounted X-ray tube will not be required for use with this type of equipment.

6.33 The patients will always be lying on the patient table during the procedure. The tabletop will be powered and capable of a wide range of independent motorised movements including vertical, longitudinal, lateral and in some cases tilting. The C-arm can move in all three orthogonal planes to give a wide range of alternative imaging projections. Fluorographic and fluoroscopic exposures are usually initiated by the use of a footswitch located close to the patient table. Fluorographic exposures may also be initiated by switches in the control area. Care should be taken to minimise any hazards with any trailing leads arising from these devices.

6.34 Clinical staff may remain in the examination room during the majority of the imaging or interventional procedure. However some of the personnel may retreat to the protected control area or move away from the table during fluorographic exposures to minimise their personal radiation dose, such as when acquiring digital subtraction angiography images with pump injection. This may not always be clinically feasible, however, and may increase the overall risk to the patient from the procedure.

Types of equipment

6.35 Two categories of equipment can be installed to meet the clinical objectives outlined above.

1. Both C-arm and table are cantilevered from mountings near a set of control and power and generator cabinets, which will typically be located along the longer side of the examination room. In this arrangement, for health and safety reasons, access to the patient table will be along one side only. The design of the unit will generally permit a wide range of vascular and interventional work and, through the use of the combined 90°-tilting table and C-arm, may also be used for barium contrast work. These units will generally not be used for cardiac applications due to the size of the image intensifier and the additional costs involved in upgrading the equipment to meet the additional imaging performance requirements.

 For this category of equipment the C-arm has a full range of movement along the length of the patient table and can be moved in lateral or cranio-caudal directions. The home position is to have the image intensifier above the tabletop with the X-ray tube underneath. If required, this relationship can be inverted in some units to mimic the function of remote units.

 At least 2m of clearance space should be provided around the patient table to allow for the movement of the C-arm in all directions.

 This equipment may be particularly appropriate for paediatric interventional, vascular and barium work, as it does not incorporate an explorator as described above for conventional and remote units. All power and control cabinets are integrated with the C-arm and table assembly and will be located within the examination room. Cable distribution may be via ceiling voids and/or wall-mounted. An example of this type of equipment is illustrated in Figure 6.1.
Figure 6.1: Example of a Siemens Polystar, showing how the electrical supply and computer cabinets are integrated with the main imaging unit as described in the main text

Image supplied by Siemens Medical Solutions

Figure 6.2: Example of an Angiostar Plus

Image supplied by Siemens Medical Solutions.
2. The patient table and C-arm are floor-mounted on separate pedestals underneath these devices as illustrated in Figure 6.2. The C-arm is located on to a movable floor-mounted l-arm unit, which allows the C-arm to move to a number of positions around the patient table, including a parked position behind the table. This arrangement will allow the equipment to be located centrally within the examination room with access to all sides of the equipment. Space must be allowed for the full range of movement of the equipment, particularly for those at the head of the table. The patient table for this type of equipment is often a ‘floating’ tabletop, with breaks for longitudinal and lateral movements. The height of the table can also be varied.

Power and control cabinets will be located away from the diagnostic equipment in a separate adjacent machine room. This arrangement may be beneficial for reasons of clinical cleanliness, and additional floor space will be gained within the examination room. The floor construction must allow for the provision of adequate cable trunking to both floor-mounted pedestals. Such cable trunking will need to be accessible for maintenance and equipment replacement. Appropriate floor constructions are described in Appendix 2: Engineering requirements.

This type of unit may have a slightly smaller image intensifier then the generic unit described above. The image intensifier will usually have three field sizes depending on the type of work undertaken.

6.36 The design of the unit will permit a wide range of vascular and interventional work but will not generally be suitable for procedures involving barium contrast media. This is because the table may only allow a limited tilting function. The units can be adapted to undertake rotational angiography, in which a number of 2D images are reconstructed to form 3D vascular images, and cardiac angiography, provided the additional software and hardware upgrades are procured. For the latter type of procedures, a much cleaner operating environment is required as described in Section 7.

6.37 See Figures 13.2 and 13.3 in Section 13 for illustrations of typical layouts and Appendix 1 for example plans.

General considerations

6.38 Because the suite is used for interventional procedures, particular care must be taken to ensure the control of infection. This will determine airflow and filtration requirements, surface finishes and ceiling construction. Health Building Note 26 together with Scottish Hospital Planning Note 26, both titled Operating Department, SHTM 2025: Ventilation in healthcare premises and SHTM 2040: The control of legionellae in healthcare premises, all give guidance on this issue.

6.39 For both categories of equipment, the ceiling-mounted type will include a maximum of four integrated viewing monitors. The monitors will require a full range of movement and will be mounted on ceiling tracks of similar design to those used to support ceiling suspended X-ray tubes, incorporating the use of
articulating arms for three-dimensional movement adjustment. The monitor suspension and C-arm will be equipped with anti-collision detectors but basic design planning should minimise collisions between these items of equipment. The radiologist must always have an excellent view of the monitor screens, with as little glare from the artificial lighting as possible.

6.40 A small special clinical procedures lamp will be required for interventional procedures, which may be floor-standing or ceiling-mounted. Again, this should be designed not to collide with other devices.

6.41 In the majority of cases the patient will receive sedation, combined with anti-pain drugs and local anaesthesia. In a significant minority of cases general anaesthetic (GA) will need to be administered. Space should be provided for the anaesthetist and for trolley-mounted anaesthetic and monitoring equipment. Alternatively, and depending on patient numbers requiring GA, wall-mounted piped anaesthetic gases and AGSS should be provided in addition to oxygen and vacuum services. Trailing leads should be avoided if possible.

6.42 During some procedures, particularly those involving GA, there may be up to nine personnel in the examination room and control area. For example during a TIPS procedure on a patient from ITU there may be two radiologists, an anaesthetist, an ITU nurse, two radiology nurses and two radiographers/technologists present. If cardiac procedures are undertaken, numbers will increase as cardiac technicians will also be present.

6.43 The contrast medium used in the majority of vascular imaging and interventional procedures is an iodine compound, in aqueous form. Shaped catheters and guide wires are introduced and manipulated into specific vessels under fluoroscopic control. The contrast media is administered either by hand or using an automated ceiling-mounted power injector, which may be remotely operated or integrated with the function of the X-ray unit. The latter is achieved through a connection to the cabinets or control computer. The power injectors are mounted and fixed to a mobile trolley and can be moved to different locations in the examination room, depending on clinical requirements.

6.44 The contrast media are not prepared in the department and are available commercially in vials or syringes. The contrast media will be pre-warmed to body temperature by a small worktop-mounted heater unit (0.5m³), which may be installed in the control or examination area.

6.45 Single-use catheters, stents and filters will be delivered to the department and will require local storage provision. Substantial numbers of different size and diameter catheters will need to be stored within the examination room. These must be ready for immediate use, within easy access for the radiographer/technologist or nurse. The catheters may be stored on fixed wall racking or on specialised tall mobile trolleys specifically designed for the purpose. As an indication, approximately 3m linear run of wall racking may be required or a lesser area of more compact mobile storage. Long term storage of catheters and other medical equipment associated with the clinical procedures may need to be located in an easily accessible room close to the interventional suite. See paragraphs 6.49 and 6.66.
6.46 Many departments now make use of sterile packs for X-ray fluoroscopy-guided interventional procedures. They are delivered to the department in boxes either weekly or monthly and, depending on the number required, will need to be stored within the department. In some cases substantial storage space will be required.

6.47 Some procedures may require the use of ultrasound imaging together with fluoroscopy, necessitating the installation of a mobile ultrasound unit in this suite. One option is to integrate the power supply for this unit within the power distribution and X-ray generator cabinets. This will prevent the unit being removed from the suite, ensure that the X-ray and ultrasound units have the same electrical earth, and possibly avoid problems with trailing leads. Another option is to provide a single ultrasound machine to serve three or four interventional rooms in a suite. This will allow better utilisation of the equipment and justify the procurement of a higher specification ultrasound unit. A further monitor may be installed to display ultrasound images only, and this should preferably be part of the main ceiling-suspended cluster or nest of monitors. This monitor may be one of the four ceiling-suspended monitors described above.

6.48 Facilities for clinical hand-washing must be provided within or adjacent to the examination room. These should be in the form of a two-position stainless-steel scrub-up sink or trough with elbow action taps and appropriate scrub dispensers together with storage for gloves, gowns, drapes and caps. The provision of a shared scrub-up area may be appropriate and could be shared between one or more X-ray fluoroscopy rooms and other modalities.

6.49 Other equipment in the examination room may include:

- a wall-mounted triple or double X-ray film viewer;
- a mobile suction trolley for procedures where the mouth receives local anaesthetic sprays and consequently salivates heavily. This will be when a gastroscope is moved through the upper GI tract. Piped oxygen and suction must be provided;
- trolley or wall-mounted pulse-oximetry, blood pressure and ECG equipment for monitoring sedated patients, (instead of anaesthetic trolleys);
- mobile trolley or ceiling-mounted X-ray controls. These must be designed for use in the control and examination area, if required. Trolley-mounted devices have the disadvantage of trailing cables. Many units are arranged so that the table and C-arm controls are mounted on a mobile trolley, which combines a radiation protection lead glass screen. This allows the radiographer/technologist to work as part of the team within the room, aids communication between team members and reduces the radiation dose;
- a controlled drugs cupboard for the storage of sedatives, painkillers and other drugs;
- space for general medical supplies trolleys.
- fixed wall or floor-mounted cupboard storage, together with worktops for the preparation of equipment such as catheters and other medical equipment.
required for specific procedures. As an indication, 3000mm of worktop space should be allowed for the sorting and storage of catheters. Some preparation procedures may take place in an adjacent storage/lay-up space, although this practice is in decline because of the increasing use of pre-produced sterile packs;

- local radiation protection to protect staff during imaging procedures. This may take the form of lead glass, ceiling suspended, shields on fixed articulating arms, which are positioned close to but in front of the patient table. These are placed between the radiologist and the patient and are specifically installed for the protection of the radiologist. A flexible lead-lined sheet may also be fitted to the table to reduce the radiation exposure to lower extremities of staff working in the room;

- a mobile lead shield located in the examination room for the protection of staff who may not be integral to the current stage of the procedure. Alternatively, a set of X-ray controls may be mounted behind a fixed shield;

- image sequences, sound and camera views relayed by CCTV for teaching purposes, or saved for the same purpose.

Imaging approach

6.50 The majority of images acquired from these units will be in a digital or soft-copy format. It is unlikely any of the images will be acquired using conventional X-ray film, so there is no requirement to site these rooms near a processing area. The images may be reviewed at the main control workstation, then laser printed and/or stored on a local or main department digital archive. There may be a requirement to network a dry/wet laser printer, which may be shared with other modalities. In some instances, a dry laser imager may be sited directly within the control area. In vascular imaging, the volume of images required to demonstrate the stenosis or other significant clinical findings may be relatively large. In interventional procedures the number of retained images will be lower, as there is only a requirement to demonstrate the efficacy and success, or otherwise, of the interventional procedure.

6.51 Where rotational vascular imaging is undertaken, the images are reviewed and then sent to a dedicated or multi-modality workstation for 3D reconstruction. This workstation could be located in an adjacent control area or in another, not necessarily adjacent, room serving a number of fluoroscopy systems or other digital modalities.

6.52 As part of the procedure, fluorographic images may be acquired directly to a video recorder located in the control area. However the introduction of digital acquisition techniques is beginning to minimize the use of video recorders.
Control/review area

6.53 The majority of procedures will take place with the radiographer/technologist, radiologist and other clinical staff in the main procedure room. A separate adjacent control area will be required for:

- the installation of a separate set of duplicate X-ray unit controls to operate the system, in case of the failure of the examination room control units;
- review of the images acquired at the end or during a procedure and for the creation of hard or digital copies;
- visiting clinicians, students and other staff to observe the procedure;
- a second radiographer/technologist who, if present, may remain in this room during the procedure.

6.54 The control area should have direct access from the examination room and should be provided with a large lead glass observation window.

6.55 Project teams should consider two different options for the provision of a control area associated with a non-vascular and vascular interventional procedure room:

- the control/review area may be integral with the procedure room, in a manner similar to a general X-ray room, by the provision of radiation shielding screens. The area of the room will need to be larger than a general X-ray room because of the additional equipment and numbers of staff present. The control area should have separate access from a corridor and, depending on the shielding and attenuation provided by the screens, a radiation shielding door may be needed.

- a separate room may be provided for the control equipment and imaging workstation. Direct access to and observation of the examination room must be possible. This room may be used as the control room for more than one interventional/imaging fluoroscopy room, thus saving space. In this case, it may be easier to justify the provision of a local dry laser printer and/or image reconstruction/post-processing computer workstation serving both fluoroscopy rooms. In a DGH, the conventional/remote room may share a control area with an interventional suite allowing future adaptation of the conventional room to, for example, CT.

6.56 A separate computer workstation may be needed for the recording of patient details. In some instances, this may be integrated with the function of the imaging workstation by the use of a suitable interface.

6.57 A local archive may be required to store patients’ images. It will be associated either with the imaging workstation or with the post-processing computer. The archive may store images over a two month before they are transferred to CD-ROM, MOD or a more central digital archive. If hardcopy films are produced through laser printing with no other form of permanent copy available, the films will need to be stored in a film library.
Clinicians may consider some of the procedures to be operations. A written record, in the form of a session book, may therefore have to be kept. The session book will be retained in the control/review area.

Anaesthetic and post-procedure recovery combined area

Two combined recovery/anaesthesia bays should be provided per procedure or examination room. These are required for patient recovery or inducement of anaesthesia. The bays may also be used for the administration of sedatives or other pre-medication prior to a procedure. The area may be a separate room or an open plan area close to the interventional suite. Patient privacy must be maintained. In open plan arrangements the design may be similar to an acute medical ward 6-bed room.

Each recovery/anaesthesia bay should be provided with standard bed head services, including power, piped oxygen and vacuum. Some bays will require piped anaesthetic facilities depending on local clinical practice and protocols. Space will be needed for physiological monitoring devices. These may be located either on trolleys or on fixed bed-head shelving. Each bay should be fitted with cubicle curtains for patient privacy.

A free-standing desk or fixed workstation, with chair and under-top storage, is needed as a workbase, primarily for nursing staff in the recovery area. Some shelving and a pin-board should be located nearby, together with a controlled drugs cupboard for holding sedatives and painkillers. The workbase will require a worktop, under-worktop and wall cupboards for storage of linen and IV fluids and a clinical wash-hand basin with associated dispensers. Resuscitation equipment will be located within the workbase area. Approximately one nurses' workbase should be provided for every two to six recovery/anaesthetic bays. The workbases should be sized according to the number of associated bays.

A combined anaesthetic/recovery area, comprising 5 bays and a work-base and its relationship with the X-ray fluoroscopy interventional room is described in Appendix 1: Example plans.

The anaesthetic/recovery area may be planned to serve adjacent modalities which also involve the use of GA or sedation, such as CT or MRI scanners. In this case, additional recovery bays may be required.

Separate anaesthetic and recovery areas

In some instances, local clinical practices and the number of patients requiring GA may mean that separate anaesthetic and recovery areas are needed. To allow for easy transfer of the patient into the procedure room, the separate anaesthetic room should be located directly adjacent to the interventional suite as in a standard operating theatre design. The room should be similarly equipped and sized to those used in the operating theatre environment. Health Building Note 26 together with Scottish Hospital Planning Note 26 and SHTM 2025 give further details.
6.65 The separate recovery area will be used solely for recovery and therefore piped anaesthetic services may not be required. The recovery area may be used for in-patients, before they are transferred back to the ward, or for patients admitted on a day case basis. A nurses’ workbase will be required.

Sterile store and preparation area

6.66 Clinical packs used in the procedures may be delivered already prepared to the department. However, there are some instances where assisting nurses will need to prepare packs prior to a procedure. Sterile storage areas should therefore be allocated within the suite or department for catheters, guide wires, prepared packs and other clinical items, which are used during clinical procedures. Space should be provided for staff to make up additional procedure packs as and when required. The storage and preparation areas should be sterile environments and should meet the standards described in Appendix 2: *Engineering requirements*.

Dirty utility store

6.67 Space should be provided for the temporary storage of clinical and non-clinical waste and for dirty linen skips, all of which should be emptied regularly. The store should be located outside the procedure, recovery/anaesthetic and control areas and may form a separate room shared with other modalities.

Staff changing facilities

6.68 Within the diagnostic imaging department, separate changing facilities for male and female staff should be provided for a minimum of six personnel. Shower facilities will be needed. Each member of staff will require their own separate locker. Space should be allowed for four additional members of staff from outside the department attending discrete procedures. Further guidance on staff changing is given in Section 15: *Ancillary patient accommodation*.

Associated specialised engineering requirements

6.69 Refer to Appendix 2: *Engineering requirements*.

Mobile fluoroscopy equipment and the requirements for operating theatres and other environments – special case

6.70 Mobile fluoroscopy equipment comprises a trolley-mounted mobile C-arm fluoroscopy-imaging device with integrated X-ray control panel, together with a separate trolley mounted with single or double image viewing monitors. The equipment is illustrated in Figure 6.3. Normally these devices are coupled with a single high-tension electrical cable and powered using a designated single-phase 13A electrical socket. The equipment may have the following clinical uses or be utilised in the following locations:
• in orthopaedic surgery for checking the positions of metal pins, etc. during surgery;
• gastroendoscopy suites for undertaking ERCPs where these are not undertaken in the main diagnostic imaging department;
• temporary cardiac pacing procedures in cardiac resuscitation wards.

Figure 6.3: Main components of a mobile image intensifier
Image supplied by Siemens Medical Solutions

6.71 Mobile fluoroscopy procedures must be carried out in radiation-shielded or protected areas. The use of lightweight blocks in the construction of the walls is not appropriate and brickwork or lead ply construction may be required. The level of radiation protection will depend greatly on the use of the equipment. Consultation with the RPA in this area is advised. X-ray mobile fluoroscopy equipment will probably be used only in designated areas. It may therefore be possible to dedicate a separate electrical socket for the equipment. This will ensure the protection of the fluoroscopy equipment from electrical supply variations and damage to other items of electrical equipment. See Appendix 2: Engineering requirements.

6.72 Staff working with the equipment should be provided with lead-lined jackets and possibly mobile radiation protection shields for their protection during X-ray imaging procedures.

6.73 It will not be possible to test or undertake maintenance on mobile fluoroscopy equipment in a non-radiation protected area, as radiation exposures during testing are much higher. For this reason, a separate radiation protected room should be provided within the diagnostic imaging department for testing and maintaining equipment. The same room can be used to test general mobile X-ray equipment. Alternatively, a shielded X-ray room could be used for testing equipment, although this may affect patient throughput.
7. Specialised angiographic systems for cardiac applications

Background and introduction

7.1 The requirement for cardiac imaging services, particularly cardiac angiography, interventional cardiac radiology and radionuclide imaging, is recognised as important in the delivery of NHSScotland’s action plan for coronary heart disease.

7.2 The majority of these installations will be incorporated into services at the tertiary level, particularly if they are used in conjunction with paediatric patients. The clinical requirement may be to support a nearby or integrated cardiology unit or to support cardiac services as a whole within a tertiary referral hospital. Installing these units in specialist institutions will ensure that they are fully utilised by highly trained cardiologists, or imaging radiologists who specialise in cardiac disease, who are able to maintain their expertise in what is a fast developing area of medicine.

7.3 This section provides guidance on the planning and design of fluoroscopic/fluorographic imaging and interventional facilities for the diagnosis, treatment and care of patients suffering from heart disease. It will describe facilities for the diagnosis and treatment of adult patients and note special considerations for paediatric patients. The facilities are similar to those described in Section 6 on vascular and non-vascular X-ray imaging, but the equipment is, on the whole, more technically capable, usually has a smaller image intensifier and can image at much higher fluorographic imaging rates.

7.4 In some instances it may be clinically necessary, particularly with children, to provide imaging in two perpendicular planes almost simultaneously. This is achieved by the use of two image intensifiers and X-ray tubes mounted on two separate C-arms within the same examination room. This configuration is shown in Figure 7.2.

7.5 Manufacturers have begun to provide systems fitted with solid state detectors instead of a more conventional image intensifier unit. It is expected that, due to their potentially superior imaging performance in cardiac imaging, these units will supersede more conventional image intensifier units over the next few years. The potential impact on the built environment of these types of systems is discussed below.
Clinical and operational objectives – adults

X-ray coronary angiography

7.6 X-ray coronary angiography is used in demonstrating coronary artery disease and in diagnosing and planning coronary artery bypass grafts (CABG) where it is considered that the patient may benefit and can tolerate the procedure.

7.7 It is a technique that involves imaging the coronary arteries of the heart to look for stenoses or artery narrowing including blockages, usually associated with patients suffering from angina and other heart-related problems. In this clinical procedure, the contrast medium is injected directly into the branch of the aorta, which supplies the three coronary arteries. This is achieved by the use of a slim sterile flexible tube, a cardiac catheter, which is inserted into the patient and manipulated from the femoral artery. Frame rate images of 12.5 per second, 25 frames or more per second for left ventricle studies, are acquired digitally as the contrast media moves through the coronary arteries. The images are then reviewed and reported later, using an associated clinical workstation.

7.8 High temporal resolution, i.e. imaging at high frame rates, is a requirement for this diagnostic examination. It is one of the major differences between X-ray coronary angiography equipment and equipment supplied for vascular and non-vascular interventional radiology and may require the installation of additional equipment or plant to facilitate this clinical requirement.

7.9 X-ray coronary angiography is still one of the principal diagnostic tools of cardiology, and has an important role to play in a number of cardiac diseases. For this reason facilities for undertaking cardiac angiography are often provided as an integral part of, or in support of, cardiology treatment facilities.

Percutaneous Coronary Intervention (PCI)

7.10 Angioplasty is a non-invasive procedure whereby the repair or reconstruction of narrowed or completely obstructed arteries, resulting from a degeneration of the walls of the arteries due to the formation of fatty plaques and scar tissue, is undertaken without need for thoracotomy. In PCI – ‘balloon angioplasty’ – an inflatable balloon, mounted on the tip of a flexible catheter, is placed under X-ray control within the lumen (cavity) of the affected artery, at the site of the disease. For a description of catheter placement, see the X-ray coronary angiography section above, (paragraphs 7.6 to 7.9). On inflation of the balloon, the lumen is enlarged, disrupting the inner wall of the artery, which reduces the chance of further narrowing occurring. The site of the obstruction is identified by coronary angiography and PCI may be undertaken as part of the same procedure.

7.11 Other procedures undertaken in this suite may include the implantation of pacemakers and ICDs or direct electrophysiology measurement under fluoroscopy control.
Patient journey – adults

7.12 Patients who have already undergone a heart attack or are suffering from chest pains may be admitted through the A&E department where they will have been stabilised, had multi-channel ECG investigation and, if indicated, administered with ‘clot busting’ drugs such as Streptokinase. This would be undertaken prior to transfer to the coronary care unit, cardiothoracic operating theatre, or ward. The patient may be investigated using coronary angiography examinations and in some cases undergo PCI, if this is considered of clinical benefit. The diagnostic imaging and interventional procedures will usually be undertaken in a tertiary referral centre. Patients who attend A&E in a tertiary centre may receive coronary angiography or PCI relatively soon after the heart attacks.

7.13 Alternatively, patients with transient but frequent chest pains may be referred to a cardiac specialist, who may refer them for coronary angiography. The results and outcome of this examination may determine the next step for the patient. This could be a coronary artery bypass graft or PCI, which may be undertaken at the same time as the coronary angiography examination. Patients for coronary angiography examinations normally attend as day case patients. In some instances, the patient may be admitted as an in-patient.

7.14 Patients may be transferred from secondary healthcare centres for coronary angiography examinations or, in some cases, PCI. The results of the coronary angiography examination may be used to plan surgical interventions, which again will be undertaken at the tertiary referral centre.

7.15 Generally, adult patients can be successfully examined or undergo PCI procedures using single plane fluoroscopy equipment and there may be no requirement to procure bi-plane systems. As a general guide, imaging examinations and interventional procedures may take between 30 minutes and two to three hours for complex PCI cases.

Patient journey – paediatrics

7.16 In the majority of cases, heart problems in paediatric patients will be of a congenital nature and will usually be picked up during the child’s early years. Virtually all patients will be referred to a tertiary referral centre for diagnosis and treatment, as care of these patients requires specialist equipment and expertise. Generally, children will be referred to the tertiary centre either from a consultant at secondary care, A&E department or a GP working in a primary care setting. Diagnostic procedures using X-ray fluoroscopy/fluorography equipment of this type are avoided in paediatric patients, unless contraindicated, as the radiation doses from the procedures can be quite high. Diagnostic procedures are now largely undertaken using ultrasound. However, interventional procedures are still undertaken using X-ray fluoroscopy/fluorography equipment. There is the possibility that very young children, including neonates, may undergo these procedures and since the contrast media used may induce a toxic shock, it is necessary to minimise its use in such cases. To reduce the amount of contrast media required it may be
necessary to complete the procedure by imaging paediatric patients simultaneously by the use of bi-plane equipment in two perpendicular planes.

List of accommodation for tertiary centre provision

7.17 The accommodation required to provide cardiac angiography services in a single suite is as follows:

- a cardiac X-ray fluoroscopy/fluorography procedures room. In a tertiary referral centre, there may be several of these rooms containing a mixture of biplane and single plane X-ray imaging equipment. These are sometimes referred to as cardiac catheterisation laboratories or cath labs;
- a control area to house the main computer workstation controlling the X-ray equipment;
- a technical room for housing all the electronic equipment;
- a small area outside the procedures room for the storage of lead-lined aprons;
- scrub-up facilities.

7.18 The following accommodation could be provided to support a number of cardiac catheterisation laboratories:

- a sub-waiting area, including an area where patients relatives are able to wait comfortably during long procedures;
- a day case ward. This area may be used as a waiting area for patients who may have been transferred from the ward. In some instances it may be possible to share this space with other modalities;
- a porters’ base to assist with the transfer of patients to and from the wards;
- a counselling room;
- a dirty utility room/disposal area;
- a clean utility room;
- toilets for use by patients and accompanying relatives/carers. At least one must be suitable for people with disabilities.

Room and equipment descriptions

Examination room

7.19 The design and character of the cardiac catheterisation suite will be similar to that used for non-vascular and vascular interventional work. All catheter laboratories should be designed to operating theatre standard.

7.20 The number of cardiac catheterisation laboratory suites required will depend on the patient throughput and the number of hospitals served by the tertiary referral centre. Each suite should be capable of undertaking a series of procedures. If
paediatric patients are to be catered for, a minimum of one of these laboratories should be equipped with bi-planar digital angiography machines, and at least one laboratory should be equipped with single plane angiography equipment. Each laboratory will require a ceiling-mounted, and optionally moveable, pendant for anaesthetic services and also a ceiling-mounted investigation lamp. Medical services may be provided from ceiling- or wall-mounted outlets and will comprise medical oxygen, nitrous oxide, compressed air at 7 bar and 4 bar pressure and suction. Anaesthetic gas scavenging will also be required.

Environmental services, finishes and fittings to all laboratories will be to minor operating theatre standard.

7.21 The laboratory, in the majority of cases, should be made large enough to accommodate bi-plane equipment, even if single plane equipment units are to be installed. The function of the room may alter at a later date due to changes in clinical practice. Bi-plane units must have a minimum floor area of 50sq.m and have dimensions of approximately 7500mm x 6750mm to accommodate the C-arm and because of the numbers of persons present at some of the procedures. The room should be planned to accommodate six to eleven members of staff and students plus the patient. Critical areas and dimensions can vary according to the requirements of a variety of operational and equipment options. It is therefore vital to obtain information on client preferences and the selected manufacturer’s equipment before designing the room in detail. The major items of equipment are listed below:

- multi-angular isocentric X-ray digital single or bi-planar angiographic system. Most single plane units are floor-mounted, but ceiling-mounted systems are available. The installation will commonly incorporate a ceiling-suspended transparent leaded panel to give an element of radiological protection while allowing the cardiologist an acceptable view of the patient. Some systems offer a combination of floor-mounted equipment with ceiling-mounted C-arm and/or couch assemblies. Where ceiling-mounted or composite systems are to be installed, some additional reinforcement of supporting structures may be required. Floor-mounted sub-components of the system are normally bolted through the floor structure or are otherwise securely fixed to it by secure heavy duty fixing devices, capable of retaining a moving mass weighing up to three metric tons with high residual torque;

- integrated or closely associated variable-height patient couch, capable of multi-directional movement and operating in conjunction with an isocentre positioned at or near the patient’s heart. Exceptionally, tilting along the patient’s long axis may be required, and local discussion of this issue is advised;

- two to four ceiling-mounted monitors displaying real-time and digitally recorded angiographic images, with optional additional monitors displaying physiological data. There is a move to flat panel display, which will have the effect of reducing suspension and other engineering requirements. Very occasionally trolley-mounted monitors are used, and although these have now been almost universally superseded by ceiling-mounted monitors, they may help to resolve the couch/control room relationship issues discussed later in this section;
• power injection facilities for contrast media. These are usually trolley-mounted, but there is also a ceiling suspension option available;
• anaesthetic trolley and resuscitation equipment;
• minor procedures trolley;
• worktop with over and under wall-mounted cupboards, wall or worktop-mounted warming cabinet for the preparation of contrast media, wall-mounted drugs cupboard, double X-ray viewer and wall-mounted or floor-standing catheter rack. Open shelves should not be used for hygiene reasons;
• a rack for lead-lined aprons, located at the entrance to the room, preferably outside the controlled area (see below). The weight of these racks is considerable and additional reinforcement to the supporting floor structure may be required. Storage for lead glasses and thyroid shields may also be required, but located in the main examination room for security reasons.

7.22 One bi-planar laboratory may be designed to undertake electrophysiological studies. If this is planned the laboratory should be large enough to accommodate the necessary equipment and a minimum of eight team members plus the patient. The main additional space consuming items of equipment are:

• two additional overhead monitors;
• a desk-mounted physiological monitoring system and display. There is a strong clinical preference for these to be located in the laboratory although other considerations, mainly radiation safety, suggest the adjacent control room to be a safer location. The problem is how to combine the safety benefits of a screened environment with the clinical requirement for immediate contact between those undertaking and those monitoring the procedure. To date this problem has not been solved satisfactorily, but mounting the desk on a trolley may be one solution.

7.23 A number of hospitals are beginning to use ultrasound during procedures, particularly those involving paediatrics, as a means of supplementing and replacing some of the X-ray imaging. Space should be provided in the examination room for an ultrasound unit, an additional operator and a monitor to display the images. The power supply for the ultrasound unit may, depending upon operational requirements, be integrated with that of the X-ray system.

7.24 Each laboratory will be served by an X-ray system control area, which conventionally is provided en suite, but in a separate compartment. It must be radiation protected and have good visual and voice contact with the cardiac catheterisation laboratory. This arrangement is usually preferred on ergonomic and safety grounds. Exceptionally, and according to client choice, the cardiac catheterisation laboratory room may be open plan with no separate control area and with all persons present wearing radiation protection clothing.

7.25 Control areas may be provided separately for each laboratory, or shared between pairs of laboratories. In the latter case, the area must be large enough to enable two teams with their monitoring equipment to operate independently.
and maintain unimpeded access to the laboratory served. Space must also be available for surgeons and visiting specialists to observe procedures in a radiologically safe environment.

7.26 Equipment manufacturers and facilities designers have not yet overcome the problem of the relationship of the patient couch to the procedure viewing panel in the control room. The problem arises from potentially conflicting requirements for access to, and observation of, the patient by the different members of the team. Under present regulations all members of the team are jointly responsible for the safety of the patient while the examination is being undertaken. Some of the team, however, will be stationed in the control room. The conflict is normally resolved by acceptance of an element of compromise, but the challenge of developing a solution that is entirely satisfactory on all relevant counts remains. The main issues and constraints that need to be addressed largely centre around, or impact upon, the orientation of the patient couch. These are:

- the need for the cardiologist, who may stand on the left or right of the couch depending on whether he/she is left or right handed, to have a clear and unobstructed view of in-room ceiling or trolley-mounted monitors. From the point of view of the operator, an arrangement whereby the couch is at right angles to the control room viewing window, thus presenting an identical view of the patient along the long (cranial-cordal) axis of the body would seem the best option, since it is not affected by the side on which the cardiologist stands;

- the need for observers outside the control room to have a clear view of the patient in order to discharge the duty of care referred to above. It is argued that this cannot be properly done if only the feet of the patient are visible, as would be the case if the couch were placed at right angles to the control room. An arrangement whereby the couch is placed parallel to the control room viewing window, with the in-room team located on its far side would facilitate better observation, but would significantly disadvantage a left handed cardiologist, who would prefer to stand on the near side of the couch;

- the need for an arrangement that allows sound patient care in an area that is dominated by large items of equipment, some of which move during the course of the examination/ procedure. This includes direct monitoring of the patient by a nurse stationed near the patient’s head, and easy transfer of the patient on and off the examination couch;

- the need for an arrangement that works effectively within the engineering and physical constraints imposed by the design of the equipment. Care needs to be taken to ensure there is no conflict between the operating space requirements of the large number of moveable ceiling and floor-mounted items of equipment that are located in these rooms.
Accommodation to support the examination room

7.27 Additional requirements may include:

- clinical space adjacent to the laboratory. Separate anaesthetic rooms and/or exit recovery bays may be required. There is an increasing tendency to treat angiography facilities as operating theatre suites. This will impact upon their layout as well as increasing the scale and complexity of the facility;

- a combined preparation room/CSSD store for each laboratory, although these may be shared as appropriate. Refer to HBN 26 together with Scottish Hospital Planning Note 26, both titled Operating Department;

- scrub-up and sterile gowning areas for each laboratory, located in an adjacent communicating space. The scrub-up area may be provided within the laboratory;

- accommodation for a dedicated X-ray imaging generator and imaging computer equipment serving each laboratory. The preferred location for this equipment is an adjacent room or area accessed from within the laboratory by sound attenuating, radiation-protected doors or, preferably, removable panels. The presence of high-tension electricity, and the need for radiation protection for persons working in the room when the communicating door between the machine room and the laboratory is open, should be noted. Access to this room from outside the laboratory is positively discouraged on safety and maintenance efficiency grounds;

- facilities for the safe storage of used surgical instruments and trolleys used in the angiography laboratory, prior to dispatch to a central facility for bio-decontamination and re-processing. Trolley storage for a single session of, say, five to six procedures is required. Local sterilizing of used instruments is strongly discouraged;

- a preparation/recovery area for approximately three pre-procedure and six post-procedure patients, depending on the projected throughput of the laboratories. Medical services from wall-mounted outlets, comprising oxygen, compressed air and suction, must be provided at each bed head. Anaesthetic gas scavenging must also be provided. The layout of the facilities should allow good bed access and patient monitoring;

- a nurses’ base, together with clean and dirty utility rooms, associated with the preparation/recovery area. Controlled drug storage is required;

- a WC immediately adjacent to the preparation/recovery area;

- staff changing facilities, including showers and WCs, within the department;

- laser imager printing area, accommodating laser imager and processor and film storage. Increasingly, modern laser printers use a dry process and do not require a docked wet film processor. Some centres do not use hard copy and may instead employ electronic image network communication, viewing and archive storage, and will often transfer images using CD-ROM. Electronic imaging will require a suitable computer room and associated facilities which may supplement or replace laser imaging;
image archive workstation, review room and image archive storage. The review room should accommodate approximately four workstations and about eight staff, and the image archive store should accommodate about 50,000 CD-ROMs if each CD-ROM holds a single patient record. The actual number of CD-ROMs will depend on overall patient throughput and a number of other factors, including the rate at which images are acquired during the examinations. Image archiving may be a challenge for the digital catheterisation systems.

It should be noted that cine-film imaging in cardiology is now virtually obsolete, but legacy film reading using a self-contained projector will still be necessary in most centres. Therefore, space may need to be found in teaching centres for the storage of these films which may have to be kept for up to 50 years or longer;

- central departmental store and linen store. A central bay must be provided for storage of lead protective devices, including lead rubber aprons, lead glasses, thyroid protectors and dosimeters. Because some of these items are very heavy, local reinforcement to supporting structures may be necessary. Storage of these items within the laboratory is discouraged, since it implies that unprotected persons will have to enter the room to obtain them, which may be both hazardous and disruptive;
- simple local catering facilities;
- two cleaner’s rooms, one for general use, one for laboratories.

Operational policies

7.28 All staff and visitors working in clinical areas must wear appropriate theatre clothing. Facilities for the storage of these garments must be provided and conveniently located. The use of remotely located central changing facilities is not recommended.

7.29 All staff working in the cardiac catheterisation laboratory must follow a clearly defined changing sequence and route into the laboratory.

7.30 This sequence will determine the staff route into the cardiac catheterisation laboratory and the positional relationship between the physical spaces. These include the general access zone corridor, changing room, restricted access zone corridor, lead apron local storage, through to the laboratory.

7.31 For those who need to be scrubbed up and gowned for the procedure, the sequence is modified appropriately to include scrubbing and gowing activities, although this may have little effect on the overall design.

Functional relationships

7.32 The location of catheterisation laboratories close to or, ideally, contiguous with and directly connected to the cardiothoracic operating theatres, is increasingly seen as an essential measure to advance patient safety in the event that surgical intervention becomes necessary. In addition, the laboratories must be close to and have simple and direct access to:
• the cardiac day case unit;
• the coronary care unit;
• the intensive and progressive care units.

7.33 All of these close relationships are supported for reasons of patient safety.

Figure 7.1: Example of a floor-mounted Cardiac Angiography unit
Image supplied by Siemens Medical Solutions

7.34 All of these close relationships are supported for reasons of patient safety:

• the centre/hospital main entrance;
• Accident & Emergency department or ambulance drop-off point;
• cardiology and cardiothoracic in-patient accommodation.
Figure 7.2: Example of a cardiac X-ray biplane imaging system

Image supplied by IGE Medical Systems

Figure 7.3: Powered contrast media injector used in cardiac angiography and other imaging procedures

Image supplied by Siemens Medical Solutions
8. Radionuclide imaging facilities based on gamma (Anger) camera systems

Background and introduction

8.1 Radionuclide imaging, or nuclear medicine, utilises radiopharmaceuticals or unsealed radioactive sources. A pharmaceutical compound is labelled with a radioactive isotope and administered to the patient. A device known as a gamma camera then images the distribution of the radiopharmaceutical within the patient, at a suitable time following administration.

8.2 The radioactive isotope used in the majority of radionuclide imaging investigations is Technetium 99m. The pharmaceutical compound used depends on the anatomical area of interest. The main advantage of radionuclide imaging over other techniques such as CT and MRI is that physiological as well as anatomical information may be derived from the images acquired.

8.3 The reasons that Technetium is widely used are as follows:
- it has a short half-life of only 6 hours;
- it emits gamma radiation of an appropriate energy for detection;
- it is relatively easy to prepare;
- it only slightly alters the biological or chemical properties of the pharmaceutical compound.

8.4 Aspects of preparation, handling, radiation protection and delivery are detailed throughout this section and relate primarily to the use of Technetium 99m for diagnostic purposes only. The therapeutic uses of unsealed sources are described elsewhere, but healthcare planners should be aware that therapeutic administration of unsealed sources may be undertaken in the same department. Refer also to NHSScotland guidance, SHPN 54: Facilities for cancer care centres.

8.5 Radiopharmaceuticals are usually administered to the patient intravenously and sometimes by other means such as inhalation or orally. As stated above, a gamma camera (see Figure 8.1) is used to detect the resulting distribution of the radiopharmaceutical within the patient’s body. Hot or cold areas on the resulting image may relate to clinically significant findings. The essential detecting component of a gamma camera is a scintillation crystal. The environment in which a gamma camera is installed must remain relatively stable and this is further described later in this section.

8.6 Many centres have procured multi-detector gamma cameras in order to carry out Single Photon Emission Tomography (SPET) studies. In this case, the detectors rotate around the patient to produce cross-sectional images of the radiopharmaceutical distribution. A few centres have acquired systems which
have the capability to undertake Positron Emission Tomography (PET) scanning. This uses radionuclides of higher energy, which has implications for the facility design. Some comments are made in this section, but the reader should also refer to Section 9, PET for additional details.

![Example of a single detector gamma camera and its movement during SPECT acquisitions](image)

Image supplied by ADAC Medical Systems Ltd

![Example of a dual detector gamma camera](image)

Image supplied by Siemens Medical Solutions Ltd

Clinical and operational objectives

Introduction

8.7 A wide range of different organs may be investigated using radionuclide imaging, such as bone, kidneys, lungs, liver and brain. Areas where radionuclide imaging may be the modality of choice for a broad range of suspected pathologies are:

- static bone imaging;
• quantitative and qualitative renal investigations;
• infection imaging by the labelling of white blood cells;
• the staging and diagnosis of cancer.

A radionuclide imaging suite may accordingly form an integral part of a cancer unit or a cardiac and respiratory imaging facility.

8.8 Except in specialist children’s centres, the majority of patients being imaged will be aged over 50 and in some cases extremely ill. Space should be provided for dedicated resuscitation equipment within the radionuclide imaging suite in an area which has a relatively low risk of being contaminated and where the equipment will not be damaged.

Cardiac function tests

8.9 Cardiac function tests include stress/rest tests where the patient is imaged at rest, then is imaged again after undergoing exercise. The purpose of this test is to look for heart disease and possibly differentiate between ischaemic heart problems and myocardial infarction. The stress part of this test can be performed by pharmacologically stressing the patient or by using devices such as small treadmills or exercise bicycles to stress the patient. If the patient is stressed pharmacologically, additional staff may be present during the procedure which will increase the number of staff in the main examination room. The type of procedure employed will have a direct effect on the design of the facility, with the approach used depending on local clinical policies.

8.10 Particularly in specialist cardiac centres, consideration should be given to providing a separate stress room to support cardiac imaging procedures. The design of the room is briefly described later in this section. See paragraphs 8.51 to 8.54.

Diagnosis of infection

8.11 The diagnosis of infection by the use of Technetium-labelled white cells is relatively common in a number of radionuclide imaging departments. There are no special requirements in respect of the actual examination room, but separate preparation facilities need to be provided for labelling the white cells. These facilities are described under Radiopharmacy, paragraph 8.81 onwards.

Renal examinations

8.12 A full range of renal examinations may be undertaken. Examples include micturating cystograms in young children to look for renal Reflux, and measuring Glomerular Filtration Rates (GFR) in adults. GFR is generally a non-imaging investigation and can be replaced with renography in adults. Some tests require the patient to micturate while being scanned either sitting or standing. The room should be equipped with mobile curtain-type screens for patient privacy, and a commode or other vessel. The environment should be designed to be sympathetic to this aim.
Brain scanning

8.13 A large portion of nuclear medicine brain scanning has been replaced by MRI and CT, but certain indications are still valid. These include the measurement of brain blood flow to detect areas damaged by stroke, to locate epileptic foci and to study Alzheimer's disease.

Lung scanning

8.14 Patients with suspected pulmonary embolism, either in-patients or out-patients, may have a ventilation/ perfusion (VQ) scan in succession to other diagnostic investigations. In the perfusion scan, the patient will be administered with a small dose of radiopharmaceutical intravenously. In the second part of the examination a ventilation test may be conducted. This may take three to six hours, depending on the clinical evidence available. Ventilation scanning can be performed using Technetium-labelled aerosols or a radioactive gas such as Krypton-81 which will have an effect on the room ventilation requirements. In some centres, the ventilation scan may be undertaken before the perfusion imaging. Where Krypton-81 is used, perfusion and ventilation scans may be almost simultaneous.

Bone scanning

8.15 Bone scanning may be used to investigate malignant disease, in particular to look for metastases secondary to a primary tumour and which may be located in other areas of the body. In addition, it is of value in the investigation of metabolic bone disease, infection, arthritis and certain types of trauma. A Single Photon Emission Tomography (SPET) may be of value in certain orthopaedic indications.

List of accommodation and location of radionuclide imaging facilities

8.16 See Appendix 1: Example plans.

8.17 It is advantageous if the radionuclide imaging facility is located within, or close to, a larger diagnostic imaging department. In some instances floor loading and radiation protection requirements may be the overriding location factor. Location should be discussed with clinical physicists, radiographers/technologists, and an appropriately qualified and licensed consultant radiologist.

8.18 To minimise radiation hazards to potentially vulnerable groups, the radionuclide imaging suite should not be in close proximity to the following facilities:

- dental X-ray rooms and other modalities, such as MRI, which may be attended by a high volume of paediatric patients;
- obstetric ultrasound facilities.
8.19 The above has particular importance where gamma camera PET is utilised because of the increased radiation hazard.

8.20 Delivery routes for radiopharmaceuticals and the relationship with the central hospital pharmacy, including potential staff movements, should be considered in overall planning terms.

8.21 In addition to examination room(s) incorporating one or more gamma cameras and the associated control workstation, the following facilities directly supporting the examination room(s) should be provided:

- a patient injection room/area possibly with limited local lead shielded storage provision for pre-prepared radiopharmaceuticals;
- dedicated disposal facilities for the secure holding of radioactive waste before disposal, such as partially-used doses or contaminated materials including needles and syringes;
- a dedicated waiting area for 'pre and post' injectioned patients. According to local practice, some patients may have to spend long periods of up to three hours in this area, while a suitable time interval elapses prior or during their examination;
- a designated WC, suitable for use by people with disabilities, for use by radionuclide imaging patients who have received radioisotope injections. The effluent will be radioactive and the drainage system must be designated accordingly;
- a radiopharmacy facility for the preparation of radiopharmaceuticals. The provision of this facility will depend greatly on local arrangements;
- a facility for white cell labelling;
- dedicated changing facilities for staff working in radionuclide imaging facilities. A dedicated staff toilet for staff working in radionuclide imaging may also be appropriate here;
- office(s) and or reporting facilities for the clinical interpretation of the diagnostic images obtained. This may be a combined facility with other modalities;
- a cardiac stress room. This may be considered appropriate in some centres.

8.22 Counselling/interview room(s), office(s), reception, utility, storage for non-radioactive materials and preliminary waiting accommodation may also be needed. Requirements will depend on the number of nuclear medicine examination rooms and the possibility of sharing facilities with other diagnostic modalities within a department. In radionuclide imaging facilities provided primarily for oncology, a counselling room and a reception area may be required.

8.23 The gamma camera, injection room, disposal room, designated WC and the radiopharmacy will probably be designated as controlled areas under the 1999 Ionising Radiations Regulations. The suite should be designed to meet the
requirements of the 1993 Radioactive Substances Act, the Health and Safety Commission approved code of practice and relevant NHSScotland guidance. According to local policies, waiting and other areas may be similarly designated. An appropriately qualified RPA must be consulted about the design of the suite.

8.24 A radionuclide imaging department must obtain authorisations from the Scottish Environment Protection Agency for the keeping, using and disposal of radioactive substances. The disposal certificate will stipulate the amounts of radioactivity and species of radioisotopes that can be released to the environment, any solid waste which may be taken to another site for incineration and the length of time that substances can be stored before disposal. From an estates and facilities management perspective, it should be noted that solid radioactive waste destined for incineration should be marked accordingly and separated from other types of waste. For further guidance see: Medical and Dental Guidance Notes - a good practical guide on all aspects of ionising radiation protection in the clinical environment, IPEM 2002.

8.25 Other considerations include the security of radioactive materials within the radionuclide imaging suite.

Room and equipment descriptions

The radionuclide imaging examination room

8.26 The gamma camera is a floor-mounted device where the patient may lie on an examination table. This is advanced into position for imaging. Alternatively, the patient may sit or stand during the examination. In some dynamic clinical studies the patient may be injected with the radionuclide imaging agent whilst being imaged. The gantries of gamma cameras sold by the majority of manufacturers are fixed in position, but one or two systems are mobile and, in some cases, may be installed on floor-mounted tracks. Due to the constraints on the level and smoothness of the floor surface, fixed cameras are normally mounted on a load-spreading plate laid on a self levelling screed. This is important both for the scanning table and for the gantry rotation. The configuration and installation requirements of cameras will vary. There must therefore be careful consultation with manufacturers at an early design stage.

8.27 The doors to the imaging room must be wide enough to accommodate patients on beds. Careful consideration should be given in deciding how a patient in a bed is transferred from the injection room to the imaging room, particularly if they are located adjacent to each other.

8.28 The use of multi-detector gamma camera units, within NHSScotland, is increasing, as their use allows a reduction in the activity of the radiopharmaceutical administered to the patient, a reduction in scan time and the possibility of undertaking gamma camera Positron Emission Tomography (PET) investigations. Multi-detector units are generally much larger than single detector units and the area of the examination room should be increased to accommodate this possibility. It is suggested that, even if a single detector unit
is procured in the first instance, the examination room be made large enough to accommodate a multi-detector system and support PET scanning within these units in the future. The units have a useful life of between eight and ten years and, in the majority of circumstances, the building will outlast the use of a single unit. The multi-detector units also weigh more, a consideration that may be important if the imaging services department is not located on the ground floor of the hospital. In this respect, the design of the suite should consider how the individual modules that make up the gamma camera are installed and moved into position within the examination room. Future removal and replacement should also be allowed for in the design.

8.29 Ceiling-suspended or wall-mounted equipment and associated support framing is not required for the gamma camera itself, but may be required for single ergonomic ‘positioning’ monitors. A room height of 2700mm, to the suspended ceiling, will be sufficient to accommodate a gamma camera. Manufacturers must be consulted regarding future replacements.

8.30 Power and control cables serving the gamma camera normally feed down from the ceiling. Cables are never concealed within the floor construction. The gamma camera requires maintenance access from all sides according to manufacturer’s specifications.

8.31 Gamma camera positioning controls may be adjacent to the camera or located in the detector head. A separate workstation, located in the examination room, will be used to control the imaging procedure. For radiation protection reasons, the workstation should be located as far as possible from the actual camera, whilst respecting the need to care for the patient being examined. An additional workstation, connected to an RIS network, may be provided although the connection to an RIS network may be integrated with the main workstation. No fixed protective lead-lined screen is required, but a mobile unit may be provided, depending on radiation protection requirements. However, if gamma camera PET is undertaken, the advice of the RPA should be sought and additional mobile or fixed shielding will almost certainly be required. The energies of the radionuclides used in PET are higher than those used in more conventional radionuclide imaging with technetium, for example, so the radiation hazards are greatly increased.

8.32 In some imaging examinations the camera is rotated 360° around the patient, in order to obtain cross-sectional images of the patient’s anatomy and physiology. This has particular importance in cardiac applications, where 2D cross sectional images can aid the certainty of diagnosis. In order to facilitate this clinical requirement, clearance space should be left around all sides of the gamma camera to allow the detector to acquire images at different projections around the patient which will then be used to form the 2D cross sectional image. This technique can be undertaken on both single and multi-detector units.

8.33 Collimators are fixed to the front of the gamma camera detector head in order to define the field of view. Different collimators are fitted according to the energy of the radionuclide being used. They are normally moved by the use of mobile carts and floor space needs to be allocated for the storage of a number of these devices, dependent on the range of radionuclides to be imaged. The area of
floor space required for storage will depend on the equipment used. At least one type of gamma camera utilises a collimator auto changer. Additional specialist collimators will be needed for gamma camera PET, requiring additional space within the examination room. All systems require a level floor with no localised discontinuities, as this can affect the loading of the collimators. Some systems, particularly those with moving gantries, including multi-detector units, have very small tolerances. Tolerances should be checked with potential suppliers and original equipment manufacturers during the design phase. Space should be provided to change the collimator, as this operation can lead to mechanical damage and staff injury when undertaken in a confined space. Moving the patient couch from under the camera during collimator change can damage the screed and covering vinyl. In some cases, the manufacturer may require the placement of pins or holes in the floor to assist the changing of the collimator. Requirements for the initial or replacement equipment should be checked at tendering stage.

8.34 If gamma camera PET is undertaken, provision should be allocated for the storage of calibration devices. This is further described in Section 9: PET.

8.35 The patient imaging couch/table may move perpendicularly both away from and towards the gamma camera to enable patient positioning and to allow a patient to stand or sit in the front of the detector or when changing over the collimators.

8.36 Clinical staff will usually remain in the examination room whilst the imaging procedure is carried-out. Typically, a maximum of two staff will be present during the imaging procedure. Thin plastic protective clothing may be worn to protect against contamination hazards. Lead-lined aprons will not be used in this environment.

8.37 Clinical hand-washing facilities are required within the examination room. They should be designated and labelled as ‘not for the disposal of aqueous radioactive waste’. They should be fixed against a tiled area of the wall within the room and fitted with elbow-operated taps.

8.38 Changing facilities will not be required, since patients will generally not undress for the procedure. However, one or two lockers in the examination room for storing patient valuables may be considered, as personal items such as jewellery may have a detrimental affect on image quality.

8.39 The patients attending for a radionuclide examination will be a mixture of both in-patients and out-patients. One and a half leaf or double doors are required for access by patients on beds to the examination room. Space must also be provided within the room for the transfer of patients from a King’s Fund bed to the examination couch.

8.40 The conducting of radionuclide imaging examinations does not normally require patients to be under general anaesthetic. A small proportion of children and a very few adult patients may require sedation. Some examinations may take up to one and a half hours and images of acceptable diagnostic quality require the patients to remain still for these long periods of time. The design of the room should take this into account and careful consideration should be given to the
design of lighting in the examination room. Space should be provided for a small music system to keep patients relaxed during the examination.

8.41 The expensive crystal detector within a gamma camera can be damaged or cracked beyond repair if there is a too-rapid rise or fall in temperature (>2°C/hour). Damage through temperature changes or other environmental problems within the gamma camera room usually necessitates the replacement of the whole detector unit. The environmental conditions in the examination room must be appropriately controlled to manufacturer’s tolerances and full air-conditioning provided. This will ensure that the equipment operates at optimum performance levels and may also reduce overall downtime. An alarm system should be installed which will activate in the event of failure of the air-conditioning system or when the environmental conditions are outside the tolerances recommended by the manufacturer. For the majority of gamma cameras, the temperature should remain between 20°C and 22°C with a non-condensing humidity of between 40% and 60%. These figures will vary between manufacturers and should be checked carefully before installation. The doors to the gamma camera room should remain closed whenever possible and be equipped with key-coded locks to prevent unauthorised out-of-hours access.

8.42 If radionuclide imaging examination procedures include the use of inhaled aerosols labelled with Technetium, ceiling-mounted air extraction facilities should be provided to minimise the contamination risks within the examination room and, in particular, to avoid contaminating the face of the gamma camera, which may have a direct impact on clinical image quality. If radioactive gases, such as Xenon, are used as alternatives to aerosols, extract ventilation may be required. However, if only Krypton is used, extract ventilation will not be required.

8.43 Non-absorbent finishes such as conventional sheet vinyl flooring and skirting, and gloss paint or similar easy-to-clean wall finishes are appropriate. To minimise contamination risks, particular care should be taken to avoid any gaps in finishes and fixtures in which radioactive materials could become lodged. In essence, the floor covering must be continuously sealed, impervious to spillage and coved up the walls to provide in situ skirtings.

8.44 Worktop surfaces should have coved upstands against walls and should be limped at the edges to prevent radioactive substances becoming lodged in any cracks between the wall and the worktop or spilling onto the floor.

8.45 Aspects of radiation protection in wall and door construction may differ from those in conventional X-ray rooms. The principal sources of radiation within the imaging room will generally be the patient and other radioactive sources, rather than the imaging equipment. In general terms, the room must be shielded to meet the requirements of the 1999 Ionising Radiations Regulations.

8.46 If two or more gamma camera rooms are adjacent, possibly installed into an open plan area, mutual radiation effects and ‘cross talk’ may need to be assessed and the gamma cameras installed appropriately. Mobile lead-lined shields may be used to minimise cross talk between two cameras. The manufacturer and the RPA should be consulted. Mutual radiation effects and
‘cross talk’ can be a particular problem when one machine is being serviced and clinical work continues on the other or when one of the detector units is rotated through 360° to produce cross-sectional images. A similar problem may arise, particularly with small installations, where the gamma camera or imaging detector may detect radiation emanating from patients in the sub-waiting area. The relationship between the entrance door to the camera room, sub-waiting area and the orientation of the gamma camera in the imaging room must be carefully designed to avoid conflicts of the type described above.

8.47 Two-stage warning lights, such as those used in X-ray installations, are not necessary in this instance. However, appropriate signage should be appended to the entrance doors as agreed with the RPS and the RPA.

8.48 Large power cabinets, such as those found in general X-ray rooms, are not a feature of this type of equipment.

8.49 Additional storage space may be needed within the room for general clinical disposable items, a decontamination or spill kit and patient positioning aids.

8.50 In some instances, the equipment may be supplied with a large low-level radioactive source, sometimes called a flood source for QA purposes. For operational reasons, this should be stored in the imaging room, as it may be used on a regular basis (once to twice per day), or in the radiopharmaceutical preparation area, if provided. A heavily lead shielded cupboard should be set aside for the storage of this equipment.

Cardiac considerations – stress room

8.51 Where cardiac investigations are undertaken, space should be allocated for the additional equipment and staff required to facilitate the latter part of the procedure. This should be either within the imaging room or in a separate room directly adjoining the main imaging room. Depending on the approach, space may be needed for a bicycle or treadmill. See paragraph 8.9. The location of these units will depend on the overall space available and the decision to provide an additional stress room should be made at local level.

8.52 If pharmacological stressing is undertaken, then a locked drugs cupboard should be provided in this room to house the drugs used. The cupboard can also be used to store sedatives and other controlled drugs. In this case, the use of bicycles and treadmills will not usually be required.

8.53 In either case, the imaging room or separate stress room should allow blood pressure monitors, ECG equipment and other types of monitoring equipment to be connected directly to the patient. Resuscitation equipment and controlled drugs should also be easily accessible.

8.54 The design of the department should allow cardiologists ready access to patients undergoing cardiac investigations in the event of an emergency. To this end, an alarm system should be installed in the room to request the assistance of the resuscitation team.
Viewing and reporting facilities

8.55 Depending on departmental, facility or hospital arrangements, provisions for the processing and distribution of diagnostic images will need to be considered.

8.56 Gamma cameras generate a digital image, which is initially viewed at the control workstation within the examination room or adjacent office. The radiographer/technologist, with the assistance of an appropriately qualified physicist or consultant radiologist, will review the images acquired for technical and diagnostic quality. The diagnostic images acquired can then be passed along one of the following routes:

- stored locally to a hard drive or disk with local data back-up procedures;
- stored to a CD-ROM and taken to another workstation for reviewing or interpreting. Secure storage space, within the radionuclide imaging suite or the department as a whole, must be allocated for CD-ROMs if this option is used;
- generated as hard copies at local or remote laser printers;
- transferred to another workstation within a LAN in the radionuclide imaging suite, for reviewing, reporting or storage. This digital workstation may be shared with other modalities such as CT, MRI or dedicated PET, for example;
- stored on a central hospital digital archive as part of a hospital-wide networking strategy.

8.57 The images acquired will be reported, following completion of the examination by an appropriately qualified radiologist.

8.58 According to the level of provision, dedicated reporting and viewing facilities may be provided within the suite or alternatively shared with a wider diagnostic imaging department. An early decision is required on this operational policy.

Injection room

8.59 In this room, patients will be administered with a radiopharmaceutical one to three hours before their examination. Out-patients may be sent away, with appropriate radiation protection information, and requested to attend at a later time. A door should be provided capable of allowing bed access for in-patients. The injection room should not be part of the radionuclide imaging room.

8.60 The injection room may have to accommodate, albeit briefly, any or all of the following:

- a patient couch;
- a King’s Fund bed;
- a specialised seat to facilitate intravenous administration;
- a drugs cupboard;
• a clinical wash hand basin, appropriately labelled;
• a general preparation worktop with a designated sink for radioactive waste disposal. The wall behind the sink should be tiled to allow easy cleaning of any splashes from radioactive substances.

8.61 Lead-lined storage containers should be provided for small items of solid radioactive waste, such as sharps and syringes. Provision of a fixed lead-lined shield, possibly built into the worktop, may be required for operators to manipulate the radioactive substances safely. The thickness of such lead shielding will probably be greater for radiopharmaceuticals used in gamma camera PET procedures. A patient weighing machine may also be required.

8.62 Where radiopharmacy provision is remote to the radionuclide imaging suite then additional, lead-lined storage containers will be required for the storage of radiopharmaceuticals. If the department incorporates a radiopharmacy, a hatch should be provided between the radiopharmaceutical preparation area and the injection room.

8.63 Ceiling, wall and floor finishes should be equivalent to those described for the gamma camera or imaging room. The construction of the walls, floor and ceiling of the injection room may have to incorporate some form of lead shielding in accordance with the 1999 Ionising Radiation Regulations. The RPA should be consulted in this regard. The injection room should be a secure area.

Low level radioactive waste disposal area

8.64 A holding facility for larger amounts of low level radioactive waste should be provided within the radionuclide imaging suite. This will include contaminated bed linen, either from the suite or the wards, or materials used to mop up spillages. The holding facility could take the form of a small built-in cupboard or a separate room, accessible from all areas of the suite, incorporating radiation shielding such as 2mm lead ply.

8.65 In some instances, the disposal store may be used to house ‘single use’ nebuliser kits utilised in lung scanning, which, due to the inefficiency of the technique, may still contain relatively high levels of radioactive substances. Since these items may need to be stored in their original form, they may be bulky. The room may need to incorporate radiation shielding in the walls and door, such as the lead ply mentioned above. The level of radiation shielding will depend on local circumstances, the storage of equipment used in therapeutic administrations and the current and future operational requirements for the facility.

8.66 In the majority of cases, the rooms will contain contaminated articles, which may be pungent, therefore the storage area should be located in a well-ventilated area.

8.67 The general, ceiling, wall and floor finishes should be equivalent to those outlined for the gamma camera or imaging room.
Waiting area

8.68 Provision should be made for an adjacent designated post-injection sub-waiting area, sized according to anticipated patient numbers, and allowing for spacing between seats and for possibly extended waiting times. As stated above, patients may have to wait an hour or more between the administration of the radiopharmaceutical and the imaging procedure.

8.69 According to local policies, patients may be allowed to leave the suite following an injection and before imaging, provided they follow basic radiation protection advice from the radiographer/technologist. Local policies should be agreed at an early planning stage, determining whether patients who have been administered with radiopharmaceuticals (hot patients) should be segregated, and describing the facilities to be provided for accompanying adults and children. It is recommended that, where space is available, separate waiting areas should be provided for ‘hot’ and ‘cold’ patients. The size of the waiting area and the facilities provided will depend to a greater or lesser degree on local and operational policies. Refreshments and entertainment facilities should be provided for those patients who are unable to attend the hospital canteen.

8.70 The project team, working with the RPA and superintendent radiographer/technologist, should decide at an early stage whether or not the waiting area should be designated a controlled area, at any time during operational hours. This will have implications for the design of the facility, such as the need to physically separate the waiting area from the general circulation area. If the waiting area is designated a controlled area, non-patients, except comforters and carers, will be excluded. Escort nurses will have to enter the area under a ‘system of work’.

8.71 The seating in the waiting area should have non-absorbent, wipe clean finishes, to minimise contamination risks arising from incontinence. Fixed seating is preferred to ensure seats are spaced at approximately 800mm centre to centre. This should apply even if ‘hot’ patients are segregated, as the room may be subject to transient periods of over-population. The seating should be comfortable and suitable for patients waiting for extended periods.

8.72 With Gamma Camera PET, patients will need to remain relatively at rest in the sub-waiting area, to avoid muscular uptake of radiopharmaceuticals. The time between administration of the radiopharmaceutical and the imaging procedure is approximately one hour. Increased radiation protection may be required in this connection. With PET patients, for example, greater separation of the seats may be appropriate. See also Section 9: PET. In order to minimise uptake of the radiopharmaceutical in the muscles it may be clinically advantageous to provide gamma camera PET patients with a small, separate waiting room containing a couch. This may solve any radiation protection issues.

8.73 Walls and floor finishes should be non-absorbent and easily wiped clean and should be designed to meet the standards of finish provided for the imaging and injection rooms.
Radionuclide imaging toilet

8.74 A separate toilet facility within the suite needs to be provided for patients who have received an intravenous administration of a radiopharmaceutical substance. The urine and possibly the faeces from these patients may be radioactive. The toilet should be designated for use by radionuclide imaging patients only and also designated as a controlled area under the 1999 Ionising Radiation Regulations and subject to the stipulations of the 1993 Radioactive Substances Act. The toilet should not be located on a main corridor of the imaging services department, as this may spread any contamination to general circulation areas. Ideally, the toilet should only be accessible from the main patient sub-waiting area.

8.75 Conventional non-absorbent floor and wall construction and finishes will be appropriate in this area, to minimise contamination hazards. All spills will be treated as contamination by aqueous radioactive substances and should be cleaned up by the use of absorbent materials.

8.76 In all other respects this will be a standard WC accessible to people with disabilities.

8.77 There may be a requirement for a sluice in the designated toilet to deal with bed-pans from bed-bound patients.

8.78 Separate non-designated WC facilities, including a WC accessible to people with disabilities, should be provided for staff, relatives and friends accompanying the patients, possibly within the suite or as part of a larger department shared with other modalities.

Staff changing facilities

8.79 To assist with the management of contamination risk, separate changing facilities should be provided for staff working in radionuclide imaging. This should include conventional lockers and hand-held radiation monitoring equipment and may be combined with the dedicated staff toilet.

Showers

8.80 Showers should not generally be provided within the radionuclide imaging suite for decontamination purposes. Showering will have the affect of spreading any localised contamination over the entire anatomy.

The radiopharmacy

8.81 See Appendix 1: Example plans.

8.82 Radiopharmaceutical production requires highly specialised facilities, together with trained staff. It may, therefore, be appropriate for radiopharmaceutical production to be undertaken in one or two regionally designated centres, which will deliver radiopharmaceuticals to other hospitals undertaking radionuclide
investigations. This section describes the radiopharmaceutical production for diagnostic examinations only. The production of radiopharmaceuticals for therapeutic purposes is described in SHPN 54: *Facilities for Cancer Care Centres*. Radiopharmaceutical production for therapeutic use may be undertaken as part of the same facility and therefore planners are encouraged to combine the information from both sets of guidance when designing a new facility. Consultation with oncologists is advised to determine the extent of the therapeutic procedures proposed and how this may affect the design of the built environment.

Radiopharmaceutical production

8.83 There are two methods of producing radiopharmaceuticals. These are defined as closed and open procedures and are briefly outlined below.

Closed procedures

8.84 A ‘closed’ procedure has been defined as a ‘procedure whereby a sterile pharmaceutical is prepared by transferring sterile ingredients or solutions to a pre-sterilized sealed container either directly or using a sterile transfer device, without exposing the solution to the external environment’ (NHS QC Committee 1995)

Open procedures

8.85 An ‘open’ procedure is a procedure during which an ingredient or semi-finished product is at some stage after sterilisation open to the atmosphere (ie not closed in a vial, syringe, generator or other sealed container).

8.86 The design requirements of the radiopharmacy suite, to support open or closed procedures, are similar and are described below.

8.87 White blood cell labelling is an example of an open procedure. It is mentioned here to highlight the fact that where this procedure is undertaken, an additional aseptic preparation room should be provided. Otherwise, it is comparable to any other radionuclide imaging procedure. Further details are given below.

Radiopharmacy design

8.88 When designing a new radiopharmacy facility it is important, throughout the entire project, to consult with the RPA, lead radiopharmacist, RPS, Infection Control Officer and at least one radiologist with an Administration of Radioactive Substances Advisory Committee (ARSAC) certificate.

8.89 The preparation of radiopharmaceuticals differs from normal pharmaceutical agents in that there is a need to protect the operator and the local environment from ionising radiation. A number of measures have to be incorporated to protect against this potential hazard. These are described below.

8.90 The radiopharmacy should either be planned to be adjacent to or a part of the radionuclide imaging department. Ideally, it should be on the ground floor of the
hospital. It should not create a new hazard to existing areas or personnel working in the hospital. The radiopharmacy should be designed for future expansion in service requirements.

8.91 The radiopharmacy may form part of a larger pharmacy department. If this is the case, the relationship between the pharmacy department and diagnostic imaging and interventional radiology departments becomes critical.

8.92 Radiopharmacy departments should be a suitable distance away from units undertaking tracer studies. The high levels of radioactivity from the radiopharmacy unit may interfere with the low level counting equipment used in the tracer units.

List of accommodation

8.93 The list of accommodation for a radiopharmacy suite is as follows. This is in addition to the accommodation described above for the radionuclide imaging suite:

- aseptic rooms(s) for the preparation of the radiopharmaceuticals by closed, open and white blood cell labelling procedures;
- an entrance area or air-locked lobby to the aseptic rooms;
- an area for staff to change into aseptic clothing which may be combined with the air-locked lobby;
- a preparation area for the holding of pre-prepared radiopharmaceutical, syringes and other technical items of equipment such as radio-isotope calibrators, located directly next to the injection room;
- an injection room may be required for undertaking tracer studies;
- an additional aseptic room for the preparation of Iodine 131. This would be needed if therapeutic quantities are to be handled together with other therapy nuclides;
- a store for waste radioactive substances, if required. This is in addition to a waste store provided in the radionuclide imaging suite. Different storage areas may be needed for different categories of waste, for example sharps, used vials, soiled bed linen;
- an office for general administration duties including QA procedures;
- a small quality control room.

Delivery of radioisotopes

8.94 Radiopharmacies will require the delivery of a molybdenum generator, which will be provided by a specialist manufacturer and is used to produce the radioisotope Technetium 99m. Arrangements will need to be made for the secure delivery of these units into the radiopharmacy and for the removal of the old generator, approximately once per week. A system will need to be devised for safe confirmed delivery and storage. One generator will usually meet the imaging requirements for an entire week. These units, when delivered, contain
high activities of the radioisotope, usually of the order of 100 GBq. As a result, the units are heavily shielded to minimise the radiation doses to persons transporting and handling these devices. Even when the generators are returned to the contractor, their residual activities can be between 0.5 and 10 GBq. This delivery and return route will apply for all radioisotopes brought into the radiopharmacy, including those potentially used for therapeutic purposes.

8.95 Separate radioisotope units may be required for discrete examinations, such as the Technetium aerosols used in lung ventilation imaging. A preparation area for these may be necessary.

8.96 The radioisotopes should not be brought into the radiopharmacy through public areas of the hospital. This increases the risk not only to delivery staff, but also to persons in these areas, in the event of a small accident or a spill of radioactive material. If this is not possible, then arrangements should be made with the transport company for delivery and collection to be made either early in the morning or late at night when there will be fewer members of the public and staff present. There should be in a designated delivery area.

Aseptic room – open and closed procedures preparation area

8.97 The preparation, manipulation and dispensing of radiopharmaceuticals should be undertaken in an area that is filtered with air that meets Class (A) standards. The environment should also offer operator protection to at least standard Class ii (BSS726 1992). This may be achieved by installing a closed, multi-compartment downward cabinet, sometimes referred to as an isolator, within the room. Normally a single operator will work at this cabinet. In either case the room must be maintained at positive pressure relative to surrounding areas.

8.98 An alternative is to utilise a vertical down draft laminar flow cabinet in which case the air supply to the room itself must achieve Class B standards. It should be noted that if an isolator is used, room air supply should be to Class D.

8.99 In order to achieve air filtered to Class (A) standards, the cabinets will be supplied with air through a HEPA filtration system. The filter will need to be changed on a periodic basis. Appropriate maintenance should be arranged.

8.100 The exhaust from the cabinets should be vented to the outside, in conformance with SEPA standards, and the exhaust duct from the venting system should sit 3000 to 4000mm above ground or floor level of the building. The exhaust duct should not be vented to public areas and, ideally, should be located on the roof of the building. Local rules and work practices may have to be devised to prevent members of the public or staff becoming lightly contaminated with radioactive substances. Venting should be separate from other ventilation systems used by the hospital, and the exhaust duct should not be placed near windows or entrances. The cabinet should not be vented to other adjoining rooms or into the aseptic preparation room, as radioactive contaminated airborne particles may be transferred to adjoining spaces. Ducting should be designed to be fire resistant, non-absorbent and easily demounted in sections. Further advice should be requested from the RPA.
8.101 Few units will carry out open procedures other than blood labelling. Dependent on frequency it may be possible to utilise a separate isolator/laminar flow cabinet in the same room or a dedicated room may be required. The local Medicines Inspector should be consulted early in the design process.

8.102 The technetium/molybdenum generator must be stored in the isolator laminar flow cabinet. The radiographer/technologist, for the production of Technetium 99m, will eluate this unit once or twice a day. The generators should therefore be kept in a grade A environment. In many cases the generator is kept for two weeks and can present the highest aseptic risk. By comparison, normal radiopharmaceutical kits are kept in prepared form and used within eight hours.

8.103 The safety cabinets should incorporate lead glass windows for the protection of the operator when manipulating the radioactive substances or eluating the molybdenum generator. In addition, small shields may be placed in the cabinet to provide further protection for the operator. The eluation of the generator will take place within the safety cabinet to maintain aseptic preparation conditions.

8.104 The number of cabinets required will be determined by operational requirements and the number of doses which need to be made up on a weekly or daily basis.

8.105 For the radiation protection of the areas adjoining the aseptic room, it is recommended that walls be constructed of dense concrete or brickwork masonry, with a minimum density of 2250kg/m³, and with a minimum thickness of 225mm. In the majority of cases, the physical radiation protection from these masonry walls, the design of the laminar flow cabinet and the use of local radiation protection devices, such as small lead screens, should be adequate to meet the requirements of the 1999 Ionising Radiation Regulations. However, particularly where high occupancy factors are expected in the adjoining rooms including, possibly, those above and below the radiopharmacy, additional lead shielding may have to be incorporated into walls, ceiling and floor. In some cases, this may simply take the form of lead shielding behind the laminar flow cabinet. The RPA should be consulted in respect of radiation protection requirements.

8.106 The aseptic room will almost certainly be designated a controlled area under the 1999 Ionising Radiation Regulations. Illuminated two-stage warning signs are not required in this instance, but the doors should be fitted with appropriate signage to indicate the presence of a controlled area. The RPA should again be consulted as to the status of the room with respect to radiation protection.

8.107 The design of the ceiling, wall and floor finishes should be similar, but to a higher quality, to those described for the imaging room and injection room. See paragraphs 8.43 and 8.63. The surfaces should be non-absorbent, with the skirting overlapping the edges of the walls, and every effort should be made to minimise fissures in the overall finish of the suite. The ceiling should be continuous and imperforate to keep to a minimum the amount of dust which may collect in the ceiling and thus reduce the risk of infection and contamination within the aseptic room. The use of de-mountable ceiling tiles is not appropriate. The walls should be easy to wash down in case of a radioactive substance spill
and to minimise the hazards from infection. Alternative finishes may include special paints, as used in operating theatre and other environments, or possibly laminate/plastic faced panelling systems with sealed joints.

8.108 In addition to the normal waste disposal facilities, the aseptic room will need to contain a number of lead shielded waste-bins for the short-term storage of radioactive substances. The room should allow for a maximum of three persons working. A small amount of worktop space should be provided close to a hatch that adjoins directly to the preparation area described below. Storage space should be provided for essential items only. Non-essential items, i.e. those not used in preparing radiopharmaceuticals, should be stored in the adjacent preparation area.

8.109 The aseptic room will be checked for compliance with GMP standards at regular, periodic intervals. Microbiological test materials used for compliance with standards will be checked at a remote microbiology unit and arrangements should be made for transfer between these facilities.

Access area to the radiopharmacy aseptic preparation area

8.110 The entrance to the radiopharmacy suite should be via a security door. This will usually give access to the 1st change area which will form the primary air lock. Before entering the preparation area, members of staff change into appropriate intermediate level of protective clothing e.g. over-gown, over-shoes, hair protection and gloves.

8.111 Staff will access the preparation and storage area from the airlock.

Access to preparation and storage area

8.112 This space should adjoin the aseptic room and, ideally, the injection room, to allow the transfer of materials via hatches. This will permit easy transfer of prepared radiopharmaceuticals directly from the aseptic area to the injection room. The pass-through hatch between the preparation area and aseptic room should be provided with two sets of interlocked doors forming an airlock so that air pressure differences between the two areas can be maintained. This should apply if either ‘open’ or ‘closed’ procedures are undertaken.

8.113 The preparation and storage area should contain storage space for sundry clinical items such as syringes and swabs. Long term storage of these items may require cupboard space in an adjacent corridor. Worktop space should be allocated to allow persons working in the area to prepare individual doses and check the activity of the radiopharmaceutical before it is administered to the patient. In addition, a sink for the disposal of radioactive substances should be installed in this area and should be designed and marked appropriately. The area should accommodate two to three people working comfortably. To maintain good infection control, the floor, worktop, ceiling and wall surfaces should be similar to those described above for aseptic handling areas.
Access to Aseptic Facility

8.114 This forms a second airlock where staff will be required to make a second change of clothing prior to accessing the aseptic room.

8.115 An appropriate change of clothing should be undertaken prior to entry to the aseptic facility dependent on whether there is an isolator or conventional clean room set up.

8.116 The surfaces within the staff change areas should be similar to those described for the aseptic preparation room. The design characteristics of these areas are briefly described below. The entrance to this area should be over a floor-fixed step-over bench, which will provide ‘demarcation’ between restriction and non-restricted areas.

![Figure 8.3: Class (iii) microbiological safety cabinet used in the preparation of radiopharmaceuticals](image)

Image supplied by Wardray Premise Ltd

Staff change area

8.117 An indicator light may need to be placed above the entrance door to the changing area to indicate that it is occupied. A clothes skip should be provided for the disposal of used articles of clothing in preparation for laundering.

Air Pressure Differentials

8.118 As with conventional pharmacy, a radio-pharmacy utilises positive pressure to ensure product protection. The differential air pressures within the unit should be maintained with respect to ambient air pressure measured outside the entrance to 1st change. Adjacent rooms of different grades should have a pressure differentials of 10-5 pascals (guidance values by MCA).

8.119 Magne-helix monitoring dials should be installed outwith the clean area to indicate relative air pressures in the cabinet, aseptic room and the lobby.
Provision should be made for the pattern of airflow from the aseptic room to the corridor via the lobby and possibly a changing area. This will require filters or dampers, which will be built into the intervening doors or walls.

Facilities management

8.120 Cleaning of the radiopharmacy aseptic and changing areas may be undertaken by members of staff who work in the department, as specialist cleaning methods are generally employed. These members of staff should be aware of the radiation hazards. However, domestic staff, who must be made aware of potential risks, may clean other areas of the radiopharmacy.

8.121 Domestic staff who work in the radiopharmacy must be provided with some radiation protection training with respect to the use of unsealed radioactive sources. Staff should be monitored for whole body radiation doses by the use of a film badge or other monitoring equipment. In addition, cleaning equipment should be designated for use in the radiopharmacy suite and marked appropriately.

Special engineering requirements including drainage

8.122 Refer to Appendix 2: *Engineering requirements*.

Mobile gamma camera – special case

8.123 Most departments will meet clinical and operational needs with centralised and permanently installed facilities. If mobile equipment is purchased, consideration has to be given to:

- the requirement for even floor levels, since mechanical shock can damage the crystal;
- the restriction of camera movement under cover, especially in winter. Temperature change greater than 2°C/hour is likely to crack the crystal;
- the need to keep the machine switched on at all times. It must be connected to mains during storage and use, and must be battery-powered during transit. This is because gamma cameras may take 24 to 48 hours to stabilise from cold;
- radiation protection requirements: advice from the RPA and RPS should be sought.
9. Positron Emission Tomography (PET) without cyclotron provision

Background and introduction

9.1 Positron Emission Tomography (PET) is a diagnostic imaging procedure that provides clinicians with information about the body’s physiology and metabolic processes. In principle, PET is similar to radionuclide imaging. However, radiation levels associated with PET are significantly greater, because the energies of the gamma rays produced are almost four times as high. The additional radiation protection requirements for the construction of facilities and precautions in handling materials must be taken into consideration when planning and designing PET facilities or when adapting existing diagnostic rooms.

9.2 In PET, the patient receives a particular category of radiopharmaceutical, incorporating a radioactive substance that emits positrons. As these positrons encounter electrons, they annihilate to form two photons or gamma rays, which are emitted in diametrically opposed directions.

9.3 The patient is positioned in the centre of the bore of the PET scanner, which is similar in some aspects to the size and shape of a conventional single slice CT scanner as described elsewhere in this guidance. The patient is positioned on a table, which forms an integral part of the scanner. Scintillation Crystal Detectors, similar to those used in gamma cameras, are positioned within the scanner structure in a continuous wrap-around array. They are used simultaneously to detect the gamma rays emitted.

Clinical and operational objectives

Production of radionuclides used in PET

9.4 The radioactive substances used in PET can only be produced using a specialised facility called a cyclotron. Due to the short half-life of the radioactive substances used, between one to two hours, a PET facility needs to be located near to a cyclotron. If a cyclotron is not available on site, as is the case for the majority of NHSScotland Health Boards, then it should be available within two hours’ travel time.

9.5 The radiopharmaceutical utilised in the majority of PET scanning is a glucose compound labelled with Fluorine-18. This is commonly known as fluoro-deoxy glucose or FDG. Alternatives to Fluorine include Oxygen-18 labelled compounds.
Clinical applications

9.6 Since the radiopharmaceutical incorporates a chemical commonly used by the body, PET enables the physician to see the location of areas or volumes of tissue that have a higher metabolic process or rate. For example, FDG will demonstrate secondaries associated with lung cancer, which may be growing near the heart and not easily detected by other modalities, such as CT or MRI. See *Metastases from non-small cell lung cancer: mediastinal staging in 1990s - meta analytic comparison of PET with CT*. This technique can have a high impact on the patient’s care pathway and treatment. The use of PET is being investigated to detect other types of secondaries associated with other tumour types. Evidence is now being published that PET has a useful role in reviewing the benefits and risks of chemotherapy and radiotherapy, potentially reducing the need for surgery. PET can also be used for infection imaging and in neurological applications where patients have a specific type of epilepsy.

List of accommodation and location of PET facilities

9.7 Refer to Appendix 1: *Example plans*.

9.8 PET facilities can be provided:

- in association with other radionuclide imaging facilities, as part of a suite with shared supporting areas such as sub-waiting;
- in association with other modalities such as CT and MRI. Co-registration of PET and other diagnostic images is being developed. Evidence for the clinical benefit of this mathematical procedure is being collated;
- in association with a cancer treatment centre due to its primary capabilities of detecting metastatic disease.

9.9 Many aspects of PET scanning procedures and of the associated requirements for space and equipment are similar to those of radionuclide imaging in general. Reference should be made to the design guidance for radionuclide imaging elsewhere in this document.

9.10 PET services could be provided using the following equipment and facilities:

- a purpose-designed suite of rooms forming a dedicated PET facility;
- installation of a PET scanner in an adapted gamma camera room;
- conventional double detector gamma camera, which will be used in the majority of applications for conventional radionuclide imaging, but occasionally will also be used for PET clinical procedures.

9.11 The following text relates to a dedicated PET facility but some reference is also made to the last two options in paragraph 9.10.
In addition to the PET imaging room the following facilities should be provided:

- a dedicated patient injection room, possibly with local lead shielded storage provision for pre-prepared radiopharmaceuticals;
- a separate control-room, if the facility is scanning a relatively large number of patients. This is because of the increased radiation risks;
- facilities for the secure holding of radioactive waste before disposal, e.g. partially-used doses or contaminated materials such as needles and syringes;
- a dedicated waiting area for pre and post-injection patients. The majority of PET patients will have to spend long periods here while a suitable time interval elapses prior to or during their examination;
- a designated WC, suitable for use by people with disabilities, for PET patients who have received radio-isotope injections. The effluent will be radioactive and the drainage system must be designated accordingly;
- a cyclotron incorporating a radiopharmacy facility either at the Health Board or on a nearby site;
- a facility for the handling and disposal of radiopharmaceuticals;
- dedicated changing facilities for staff. A dedicated toilet for staff working in radionuclide imaging may be appropriate here;
- office(s) and/or reporting facilities for the clinical interpretation of the diagnostic images obtained. This may be a combined facility with other modalities.

Room and equipment descriptions

PET imaging or examination room

9.13 The PET scanner, in the majority of cases, is a floor-mounted unit with an integral patient table. In essence, scanner installation requirements are similar to those for larger gamma cameras, in respect of ceiling-mounted equipment and the provision of cabling.

9.14 A clinical wash-hand basin should be provided, designated and labelled ‘not for the disposal of radioactive waste’.

9.15 Shielded storage space will be required for radioactive calibration equipment used to perform attenuation corrections on the PET scanner. This can be in the form of adapted cupboards, which may be built-in under worktops, either within the imaging room or the radiopharmaceutical room, depending on local requirements. Typically, 5mm thickness of lead sheet is utilised.

9.16 General storage, in the form of wall-mounted and base units under worktops, will probably be needed for clinical related items such as linen for the table, blankets and other items such as syringes. Storage will be needed for QA ‘phantoms’ in a variety of sizes and numbers. Phantoms can usually be
accommodated in standard base units. A small amount of space should be allocated for a spill kit.

9.17 Due to the higher energy of the gamma rays involved with PET, the construction radiation protection requirements may be greater than those associated with X-ray rooms or radionuclide imaging. This depends on the size of the facility and number of patients scanned on a daily basis. As an indication, 5mm-lead sheet protection may be required in doors, and observation panels. For the internal and external walls, 200mm of 2300kg/m3 dense concrete masonry may be appropriate in a unit that is fully utilised. Comparable protection will be required where there are occupied areas below or above.

9.18 Windows should not be installed but a roof light may be considered in appropriate circumstances with roof-top access controls if necessary. The RPA should be consulted.

9.19 The scintillation crystal used in PET is made of similar materials to those used in gamma cameras. Equivalent limitations therefore apply in respect of control of environmental conditions such as relative humidity and temperature control.

9.20 Decoration, room lighting and the provision of facilities such as taped music should all be considered, as patients will usually be conscious and imaging procedures can take between 30 and 90 minutes.

9.21 To avoid radioactive contamination problems, the room finishes should be comparable to those in a gamma camera imaging room.

9.22 The position and orientation of the scanner should allow easy observation of the patient from the adjacent control room during a scanning procedure.

9.23 A computer cabinet is supplied in support of PET scanners to undertake the necessary image mathematics. It is comparable in size to a filing cabinet. It can be sited in either the scanner or the control room, depending on space available. Maintenance access will be required.

Control room

9.24 A separate control room should be provided adjacent to the scanner room, linked by a connecting door and observation screen.

9.25 Functions will include administration, control of the scanning process, observation of patients and initial review of diagnostic images acquired, using either a workstation or conventional film viewing boxes.

9.26 Storage space should be allocated where images are stored to magnetic or optical storage media, either locally, or in another remote location. Hard-copy images may be generated using a laser imager, which may be located in the control room or elsewhere as part of a larger department network.
9.27 General low-level and high-level storage cupboards or shelves should be provided in the control room for folders, papers, manuals and other supporting materials.

9.28 Worktop space will be required for a minimum of one computer workstation, which will be used to acquire the PET images. Further workstations may be installed, depending on technological development and integration and operational requirements. These may include:

- a workstation to an interface with the RIS network;
- a teleradiology workstation to allow images to be distributed to other hospitals and radiologists’ homes;
- a cross-sectional imaging workstation. Ideally, this should be located in a shared reporting area supporting other cross-sectional imaging modalities.

9.29 Local air conditioning, possibly in the form of cassette coolers or units, may be required for dealing with heat loads associated with the computer equipment used.

9.30 Separate direct access to a corridor or other shared area. During scanning, at least one radiographer/technologist will be present in the control room and will intermittently check on the patient in the PET scanner room. As many as three staff, two radiographers/technologists and one radiologist, may simultaneously occupy the control room.

Facility for the handling and disposal of radiopharmaceuticals

9.31 Radiopharmaceuticals are pre-prepared in vials at the cyclotron. Each vial contains multiple FDG doses. Vials must be transported in appropriate type A containers as designated under The Radioactive Material (Road Transport) Regulations 2002. Radiopharmaceuticals will be delivered directly to the PET suite, possibly by an outside access door directly to the superintendent radiographer/technologist.

9.32 Members of staff will not wear lead coats when handling the radiopharmaceuticals, but they will wear lab overcoats, gloves and overshoes, similar to those worn during radionuclide imaging.

9.33 Materials and finishes in the preparation area should be non-absorbent and equivalent to those described for an injection room in a radionuclide imaging suite. Small-scale monitoring equipment will be kept in the handling and preparation room and used for frequent monitoring of radioactivity levels.

9.34 Small contamination accidents may occur when preparing the radiopharmaceuticals for intravenous administration. A spill kit will be required. Facilities should be provided for the disposal of contaminated materials used in radioactive decontamination procedures.

9.35 In the preparation area, a section of worktop will be required for handling and drawing up radiopharmaceuticals. This should be shielded in lead/plywood...
laminate, with a lead equivalent thickness of 1cm. Local worktop reinforcement will be necessary. The location of any windows in this room should be considered in relation to the location of the preparation area, although the use of windows is not advised for this area. Instead, roof lights may be appropriate, as described for the scanner room.

9.36 A lead-lined disposal bin containing a conventional sharps disposal container will be located on this worktop for the disposal of contaminated syringes and needles.

9.37 A sink will be required for the disposal of radioactive substances and designated accordingly. In addition, hand-washing facilities should be provided in this room or in an adjacent area. Refer to Appendix 2: Engineering requirements for guidance on the design of drainage.

9.38 General storage should be provided as required.

9.39 The handling and preparation area will be designated as a controlled area under the Ionising Radiations Regulations 1999, with appropriate shielding for the walls and doors. Depending on the location, floors and ceilings may also require shielding.

9.40 Signage, including appropriate warning signs should be provided at the entrance door.

Injection room and supporting facilities

9.41 The majority of patients are likely to be out-patients. Provision should also be made for in-patients and wheelchair users. Changing facilities will not generally be needed, but requirements should be assessed at project planning stage and, if required, may be shared with other adjacent modalities. Metal objects such as watches and jewellery may display on the image and provision should therefore be made for their secure storage.

9.42 Some patients will require sedation, not arising particularly from the PET scanning procedure, but because of claustrophobia or anxiety induced by the scanner and scanning room.

9.43 Within the suite, the patient first goes into a preparation/injection area adjacent to the scanner room. The patient’s height and weight are checked prior to scanning, to determine appropriate doses. Intravenous administration is then conducted.

9.44 One or two staff, together with the patient, will be present in the injection room at the time of administration. The administration of the radiopharmaceutical will usually be conducted with the patient lying on their back on a couch.

9.45 Following injection, the patient typically lies still for an hour or more, to limit muscular uptake of FDG prior to scanning. The patient then walks through to the adjacent scanner room and transfers to the scanner table.
9.46 With the current generation of dedicated PET scanners, a typical scanning procedure may take one to one and a half hours, and scanning procedures may be successive, for example a whole body scan followed by a localised diagnostic examination. The patient may take a WC break between scans. Following scanning, clinical staff will hold a brief discussion with the patient, regarding radiation risk procedures.

9.47 Provision should be made for the secure storage of drugs within the injection room. A small amount of general storage should also be provided in the form of base cupboards. Clinical hand-washing facilities should be provided. Space will also be required for a small preparation trolley.

9.48 Floor and wall finishes should be as for a radionuclide injection room. See paragraph 8.63.

9.49 Surroundings should be designed to be comfortable and relaxing.

Changing areas for staff

9.50 A separate area should be provided for staff working within the PET suite. This should be designed as described for radionuclide imaging. See paragraph 8.79.

Patient toilet

9.51 A WC, suitable for use by people with disabilities, should be provided within the suite. The design of this WC will be as described for a radionuclide imaging suite. See paragraph 8.74.
10. X-ray mammographic imaging

Background and information

10.1 Refer also to SHPN 54: Facilities for Cancer Care Centres.

10.2 Mammography is an X-ray examination of the breast. It differs from general X-ray examinations in that the X-ray energies used are much lower. The equipment used is very different from that used for general X-ray imaging and requires a separate installation or room. The technique is used both in routine medical screening for breast cancer in at-risk age groups and in symptomatic patients, that is, those with specific clinical symptoms that suggest the possibility of breast cancer.

10.3 Mammography is a highly sensitive technique for the detection of lesions, including the majority of malignant and benign types of breast cancer. It will probably continue to be used as the first line investigation of breast cancer. However, although highly sensitive, it is not specific in determining the type of lesion, so other modalities and biopsy techniques are used to refine the diagnosis. In particular, ultrasound and MRI are beginning to be used as complementary modalities.

10.4 The context in which the technique is applied will differ according to the category of patient, i.e. screening or symptomatic. Dedicated mammography screening centres will be provided at all levels of healthcare, organised on a regional basis and often supported by mobile vehicle services. Symptomatic services may be provided with other modalities as part of a breast care unit or within a diagnostic imaging and interventional radiology department.

10.5 Where symptomatic and screening functions are provided by the same unit, care should be taken to ensure that patient groups are not mixed and that they remain separate, particularly before and after their examinations. The facilities required to support this objective are described below.

10.6 NHS Breast Screening Programme Guidelines provide information on the configuration and clinical standards for screening and symptomatic investigations.

10.7 Mammography equipment is smaller and more compact than standard X-ray equipment. Mammography rooms therefore tend to be much smaller in size than general X-ray rooms. Because of the sensitive nature of the examination, there is a greater need for patient privacy and this should be reflected in the overall design of the room.
Screening

10.8 The National Screening Programme is currently aiming to achieve earlier diagnosis of breast disorder in women aged between 50 and 64. NHSScotland’s publication, *Cancer in Scotland: Action for change*, proposes to extend screening to women aged 65 to 70. It also proposes to use more extensive two-view mammography imaging techniques. An increase in staff and facility arrangements will, therefore, have to be planned to meet the new targets. Mammography was selected for the new screening programme after extensive reviews of available information on alternative early diagnostic or screening techniques.

10.9 Additional facilities are likely to be required in support of the NHSScotland Plan.

10.10 Much of the national programme is dependent upon a two-phase approach.

10.11 A registry generates correspondence to alert patients to the availability of the screening service and to encourage their attendance. This service is intended to capture all women in the target age group and is supplemented by reports from general practitioners and others in primary health care.

10.12 First phase examinations, following initial patient contact, may be carried out either in established screening centres or through the provision of mobile vehicle services, made available at public access points. The vehicles are equipped primarily to for mammography, and may sometimes include processing and film viewing. They may also be equipped to permit a clinical examination of the breast by trained staff. Leaflets on breast disease are also provided.

10.13 The design of the mobile service vehicles is beyond the scope of this current guidance.

10.14 The mobile vehicles are co-ordinated and supported by specialist screening centres and departments.

10.15 Exposed or, in some cases, developed films from mobile screening will be taken to a DGH or another hospital for developing, reading and reporting by trained radiologists.

10.16 X-ray mammography examinations provide a special challenge in terms of film reading and reporting facilities. Large numbers of mammographic films are dealt with by radiologists and others trained in film reading, and high levels of skill and concentration are therefore necessary to make accurate interpretations. The environment in which these interpretations are made calls for careful design in order to maximise the visual acuity and characteristics of the viewing conditions whilst avoiding distractions such as outside sound or interruption by colleagues.

10.17 Patients may be recalled for a mammography examination where there is doubt over the clinical findings or the technical quality of the first examination. These further examinations will be undertaken in the screening centre.
10.18 Where indicated by first phase clinical findings, women will be invited to attend second phase follow-up examinations and consultations. This may include the use of other modalities, for example biopsy, in a hospital care setting.

Symptomatic patients

10.19 Mammography imaging provision for symptomatic patients may be provided as part of a diagnostic imaging department at secondary or tertiary level, in conjunction with other modalities such as ultrasound or MRI. Alternatively, mammography may be grouped with ultrasound and specialist pathology and consulting facilities to form a Breast Care Unit. Government guidelines state that symptomatic patients should receive a full diagnostic work-up within two weeks following a GP or consultant referral. This places greater emphasis on developing this aspect of the service.

10.20 In this regard, less urgent patients may be referred for mammography while urgent cases may be referred for a triple assessment, which involves mammography, ultrasound and needle biopsy. Assessments to determine non-urgent and urgent cases are made by clinicians at the secondary or tertiary referral centre.

10.21 Needle biopsy is conducted using stereotactic facilities guided by equipment attached to a suitable X-ray mammography system. This may be undertaken under ultrasound imaging guidance instead of mammography X-ray control.

10.22 A clinical trial is currently proceeding on the use of MRI as part of the triple assessment for the examination of at-risk women or those who have been singled out by the primary care level examination as having some indication of disease.

Patient journey

Screening

10.23 Patients who are attending examinations for screening will be routinely notified as described above, and will either attend a mobile vehicle clinic or a specialist centre. If, following their examination, there are doubts as to the technical quality of the images or there are areas of clinical suspicion or further diagnosis is required, then the patient will be recalled and will usually attend a specialist centre for further examinations. In some cases, this may involve a triple assessment utilising both ultrasound and needle biopsy work as described for symptomatic patients. If the results are positive, the patient will be referred to the breast care team.

Symptomatic patients

10.24 Symptomatic patients will usually be referred for assessment by their GPs, following initial consultation. Depending on the referral indications and the considered urgency of the case, patients may be sent for a triple assessment
which involves mammography and ultrasound, followed by image-guided biopsy work which may be undertaken under ultrasound or X-ray imaging control. In the case of triple assessments, patients will have an out-patient appointment booked within two weeks of initially presenting at their GP.

10.25 Patients referred to a triple assessment clinic will usually have an appointment with a consultant surgeon and the assessment will be undertaken whilst the patient attends this clinic. They will be given the results by the surgeon just after the completion of the diagnostic process.

10.26 Those patients who are considered by the surgeon to be less urgent will be referred for mammography and/or ultrasound at the earliest possible time available.

10.27 If, following an examination or triple assessment, the results are confirmed as being positive, the patient will be referred to the surgical team or an oncologist.

General aspects

10.28 On arrival for their examination, patients will be advised of the need to partially undress for the examination and will be provided with hospital gowns designed for this imaging procedure. Changing and sub-waiting facilities will be directly adjacent to the imaging or examination room. If patients for both screening and assessment are attending the same facilities, separate changing and waiting areas should be provided for each group of patients.

10.29 The patient will stand or sit directly in front of the machine or bucky during the examination. If required, patients will use a specific height-adjustable clinical chair, which should remain within the room. The design of some of these chairs may allow them to extend to become beds and the facility should be designed to allow for this feature.

Biopsy procedures

10.30 Specific patient consent should be obtained before the commencement of the biopsy procedure. The procedure should be fully explained by an appropriate member of the clinical team. The sample acquired at biopsy may need to be prepared and examined just after acquisition, particularly where this is part of a triple diagnostic assessment. In some instances, a biopsy sample may be acquired following an examination and sent to pathology for preparation and review.

10.31 Where there is a requirement for immediate examination of the sample, small pathology facilities should be located adjacent to the breast care unit.

10.32 Following insertion of the needle into the correct location, the patient may then wait in a separate private room with couch and chair in order that the mammography examination room can be used for the next patient. This private room should be located adjacent to the mammography X-ray room and the pathologist’s room.
10.33 Following the procedure, the patient may be allowed to change, recover from the procedure and return to the clinic for further consultation with the surgeon.

List of accommodation for X-ray mammography

10.34 Refer to Appendix 1: *Example plans* and to Figure 10.1.

![Example of a floor-standing mammography unit](Image supplied by Siemens Medical Solutions)

10.35 Accommodation to support triple assessment and imaging mammography services is as follows:

- mammography X-ray-imaging room(s) for the number of patients attending and types of procedures clinically indicated. Biopsy procedures should not be undertaken in rooms dedicated for screening purposes;
- dedicated processing and viewing areas;
- reporting room for the radiologist or other trained clinicians;
- an ultrasound suite. Refer to Section 11;
- pathologist preparation room: This can serve more than one imaging room where biopsy work is undertaken;
- small private waiting room;
- separate changing cubicles for both screening and symptomatic patients;
- separate sub-waiting areas for both screening and symptomatic patients, where operationally appropriate.

10.36 Shared accommodation with other modalities may include a consultation room, counselling room and one recovery bay.
Room and equipment descriptions

10.37 The common elements in hospital mammography facilities are described below.

Mammography suite used for the diagnosis of symptomatic patients

10.38 For routine mammography X-ray examinations, the X-ray room must accommodate only the specially trained radiographer/technologist, a student radiographer/technologist and the patient. For radiation protection reasons, it is unlikely that others, such as relatives, would be granted access. However, the room should also allow space for lesion aspiration or biopsy by the stereotactic mechanisms mentioned earlier. For this procedure, the number of staff may increase to five and may include a radiologist, a nurse and, in some cases, a pathologist, in addition to the patient and radiographer/technologist.

10.39 The majority of patients attending for mammography procedures will be ambulant, but wheelchair access must be provided. Modern equipment is readily adapted and adjusted to allow patients to sit or stand during the procedure. It is highly unlikely that the patients will attend for mammography on beds on trolleys. Wheelchair patients may have to be transferred to the specific clinical chair mentioned above and space should be provided accordingly.

10.40 Contrast media will not be used in this type of examination.

10.41 A significant proportion of patients will be over 65. The general design should therefore be suitable for elderly patients who may be infirm and have general mobility problems. The provision of grab rails and other design adaptations should be considered.

10.42 All mammography imaging examinations will include a lateral and superior/inferior view of each breast. In total, a minimum of four images will be acquired per examination. The X-ray equipment is designed to support this clinical objective.

10.43 Film/screen mammography utilises specially developed high-resolution film and cassettes, which are not normally used in general X-ray imaging.

10.44 The X-ray equipment will comprise:

- a single combined generator and control cabinet, which will vary in size according to manufacturer and sophistication but will usually be of a maximum size of 2000mm x 1000mm x 1000mm;
- a power distribution cabinet equipped with a basic on/off switch and an emergency off button;
- an X-ray machine of floor and column-mounted design. It is customary to bolt the unit to the floor to minimise vibration. The X-ray unit comprises a column, an X-ray tube and bucky unit in a rotatable U-arm arrangement. In its home position, the unit will have an approximate footprint area of 1m² and be 2000mm high. The U-arm can be adjusted vertically to a maximum height of 2500mm for superior/inferior views and can be rotated about a
central pivot point up to +/-90 degrees to allow lateral views of either breast.

In an examination, the breast will be compressed by the use of compression paddles, which are operated by small foot pedals located below the machine. The paddles are demountable and the manufacturer will usually provide a range of these devices to suit all patients;

- an X-ray control console and radiation protective screen. This may be provided as a fixed installation in a corner of the room or, alternatively, as a mobile screen in which a control panel may be added. In either arrangement the protective screen will be of maximum 1500mm wide and 2000mm high. A mobile screen should be provided during biopsy procedures for the protection of additional staff.

10.45 Other fixtures and fittings will comprise a wash hand basin, cupboards for the storage of QA equipment and other peripherals associated with the mammography equipment, including compression paddles and an additional bucky for magnification views. Shielded vertical racking should be provided, preferably behind the protective screen, for mammography cassettes, which are specifically allocated for this examination. Wall-mounted mammography viewing screens will be required. These are usually identical in terms of size and appearance but may differ in brightness characteristics and have some limited additional functionality. A minimum of one lead-lined protective coat should be provided, particularly if biopsy procedures are undertaken.

10.46 Space should be allocated in the room for a computer RIS terminal, which should be located on a worktop close to the main control console of the X-ray unit.

10.47 In general, oxygen and vacuum points will not be required, but in all cases this should be left to the discretion of the project team.

10.48 If required, provision should be made for storage and disposal of equipment associated with biopsy procedures. This may include a locked drugs cupboard, for local anaesthetics and sedatives, and sharps disposal bins. If required, a room should also be included for the initial evaluation of the biopsy sample which, ideally, should take place in an adjacent room.

10.49 An area of 15m² should be allowed for the X-ray room, with a maximum floor to ceiling height of 2700mm. Mechanical supply and extract ventilation will be required. The provision of additional cooling should be considered according to the heat output characteristics of the equipment, workflow and maximum occupancy.

10.50 The relative positioning of equipment and doorway should be arranged to minimise the risk of accidental loss of privacy and maximise proximity and line of sight between the radiographer/technologist and the patient. The design should help minimise patient anxiety. An example is shown in Appendix 1: Example plans.
10.51 Typically, the X-ray room will incorporate a single doorway for use by staff and patients. In a triple assessment unit, the rooms should be provided with interconnecting doors to the separate waiting and pathology rooms.

10.52 Dimmable lighting should be provided to enable the use of X-ray viewers while also allowing bright lighting conditions necessary for the maintenance of equipment.

10.53 A worktop-mounted film marking unit may be needed depending on the proximity of the processing area and the procedures used.

Radiation protection

10.54 Whilst the X-rays are classified as penetrating, they are much more heavily attenuated by ordinary building materials than is the case in general X-ray imaging. This being the case, levels of shielding in terms of lead equivalence are substantially lower than encountered elsewhere. Typically, equivalence of approximately 0.5mm of lead will be needed to generate levels of attenuation that will provide protection in accordance with the requirements of the Ionising Radiation Regulations 1999. This lead equivalence can be achieved by the use of a single leaf of 100mm medium density concrete block with conventional plaster finish. Alternative building materials may also be appropriate.

10.55 It is likely that conventional floor construction will provide adequate radiation protection to adjoining spaces above and below. The RPA should be consulted early in the design process for further information.

10.56 A relatively light but lead-lined door construction will probably be required, providing a lead equivalence matching the walls.

Changing facilities

10.57 As stated earlier, patients will need to change partially for their examination, therefore changing cubicles should be provided within easy access of the mammography examination room and the sub-waiting area. As a general indication, two cubicles should be provided for each examination room. One of these cubicles should allow for assisted changing and be suitable for use by people with disabilities.

Counselling room

10.58 An easily-accessible counselling room should be provided, designated primarily for use with the mammography suite, but this facility may be shared with other modalities. The character of the room is described in paragraphs 15.17 to 15.19.
Sub-waiting area

10.59 The size of the sub-waiting area will depend on the Health Board’s policies. Consideration should be given to allowing partners and friends to accompany patients. As a guide, five to six spaces should be provided where relatives are allowed to accompany the patient. Where this not permitted, three to four spaces may be appropriate. At least one space should be allowed for a wheelchair user.

Needle biopsy work – additional facilities

10.60 Biopsy work should not be undertaken in rooms that are used for medical screening procedures, as this will have a drastic affect on overall throughput.

10.61 Mammography imaging rooms used for needle biopsy work should be made slightly larger to accommodate the additional equipment used and additional persons present in the procedures. The additional equipment and facilities may include the following:

- a digital spot mammography computer workstation, which displays mammographic images acquired during the biopsy procedure. An attachment is inserted into the X-ray mammography unit’s cassette holder, the images are acquired digitally and data is transferred, directed to the workstation via a single cable;
- a mobile shield to protect the pathologist present in the room during the procedure from the X-ray source. This is in addition to those shields allowed for the radiographer/technologist undertaking the examination;
- In some cases, following collection, the biopsy sample will need to be prepared and reviewed almost immediately. A separate room containing some bench space and worktops should be provided to allow for basic histological and pathology analysis. The facilities to support these procedures are described in SHPN 20: Facilities for mortuary and post-mortem room services;
- a separate waiting room for the patient provided directly adjacent to the imaging mammography room to maintain throughput. The patients will remain with the needles inserted until the whole of the procedure is complete. The pathologist may wish to further examine the patient and possibly obtain further samples for analysis. This room should be simple in design and contain a patient couch and other basic facilities. It should be located adjacent to the imaging and pathology rooms and have a separate entrance to the imaging room.

Facility implications for screening

10.62 In the primary examination context, examinations must be made quickly if the facility is to cope with the screening of the majority of the female population in the appropriate age group. It is important to provide sufficient waiting facilities to ensure that as each patient’s examination is completed the team may move on
to the next patient. It is likely that only one entrance to the mammography room will be required, as patients will be examined sequentially one after the other.

Digital mammography room design requirements

10.63 With the exception of biopsy work, virtually all mammography undertaken in the UK is still carried out by traditional film/screen technologies. This is mainly due to the fact that image quality requirements in mammography are extremely high and the digital technologies have until now not quite reached the standards required. However, recent scientific evidence indicates that the technologies in this area are improving. One or two digital mammography units are being used particularly by institutions in North America, where the majority of development work is taking place. It is likely, as the technology improves over the next few years, that an increasing number of NHSScotland hospitals will acquire this type of equipment. All new mammography examination rooms should, therefore be designed to meet the requirements of digital mammography. The following changes may be seen as necessary to support this transition:

- the control area should be made larger in order to support the provision of additional computing equipment;
- all the ancillary equipment supplied with the mammography unit will be present. Additional items associated with the digital equipment may require storage space;
- since the heat load in the room may increase, air conditioning should be included, allowing for a variable rate of between six and ten air changes per hour;
- less reliance will be placed on film processing, although the department may wish to maintain one processor for back-up purposes, particularly in the initial stages using digital equipment.

10.64 In all other respects, the design of the suite will be similar to those units supported by conventional film processing as described in the sections above.

Special film processing needs

10.65 The image quality of X-ray mammographic images and the eventual radiation dose received by a patient will, to a greater or lesser degree, depend on the standard of film processing provided. In the majority of X-ray examinations there is a need to maximise image quality whilst minimising the radiation doses involved. This is of particular importance in X-ray mammography where the risk factors are considerably higher. Good building design and facilities management can help achieve these overall aims.

10.66 In screening centres there will need to be at least one dedicated film processor, and perhaps two, to avoid the possibility of a single point of failure. For symptomatic imaging units, at least one dedicated unit should be provided. Managers should plan clinics to maximise the use of the developing and fixing chemicals, which can go stale if not used for long periods.
10.67 The environment of the rooms in which the processors are sited needs to be carefully controlled, to ensure that films do not contain static marks. These can mimic clinical features commonly seen on some mammograms. There must be close adherence to the specifications provided by the manufacturers.
11. Ultrasound imaging

Background and information

11.1 Ultrasound imaging makes use of non-ionising as opposed to ionising radiation, in the form of relatively high frequency sound waves above 3.5 MHz and below about 20 MHz. The risks associated with the imaging procedures for both the operator and the patient are considered much smaller than ionising radiation investigations. The risks may also be smaller than with other non-ionising investigations such as MRI, where there is considerable current scientific debate over the effects of large low frequency (<1 Hz), and small radiofrequency magnetic fields.

11.2 With the exception of visual and acoustic shielding for patient privacy, there are no specific construction requirements associated with the use of ultrasound, as there are for X-ray or MRI installations. However, there are specific requirements with respect to filtered power supplies, electrical earthing and the general environment. Overall, the installation and technical built environment requirements are much simpler than those for other imaging modalities.

11.3 An ultrasound department should not be sited within the fringe fields of any MRI scanners, as fields as low as 0.5 Gauss may upset the functioning of imaging transducers. If it is proposed to site an ultrasound suite close to an MRI scanner, including floors above and below the scanner, then a magnetic fringe field assessment should be undertaken.

11.4 The low risk and potentially high clinical benefit of ultrasound, coupled with relatively low cost and easy installation requirements, has resulted in wide clinical acceptance for obstetric, gynaecological and paediatric scanning, as well as for other clinical areas.

11.5 Due to its compactness, mobility and ease of installation, ultrasound equipment may typically be distributed widely across many hospital departments. These include obstetrics and gynaecology, cardiology, A&E and ophthalmology, in addition to the diagnostic imaging department.

11.6 Ultrasound has been substituted clinically for procedures and examinations that were once undertaken using either general X-ray or X-ray fluoroscopy examinations. This substitution process is continuing and has a direct impact on the refurbishment of some diagnostic imaging departments. For example, the use of ultrasound now takes the place of X-ray fluoroscopic imaging of the lymph nodes and the majority of general abdominal X-ray examinations and liver biopsy procedures are now generally performed under ultrasound instead of X-ray imaging control.

11.7 Doppler ultrasound techniques, for measuring blood flow, have opened up a number of cardiac and vascular imaging possibilities. These techniques have
developed rapidly over the last five years and are now well established in the majority of UK DGHs.

11.8 The speed, simplicity and minimal risk associated with ultrasound examination means that it may be used as the first step of a possible sequence involving other diagnostic tests. The reliability of diagnosis associated with some procedures will probably improve with the increasingly fast development of ultrasound imaging technologies and techniques, thus encouraging its use.

11.9 The mobility of ultrasound units varies in accordance with their weight which can be anything from 2 to 250kg. They are becoming more versatile as the number of clinical areas being investigated by the units grows. As a result units are generally becoming smaller in size, very portable, even hand held, but with higher performance.

11.10 A typical ultrasound unit will consist of:

- an imaging and processing electronics unit complete with integral viewing monitor, twin monitors for obstetrics systems. In physical space terms, this is the main part of the equipment;
- a number of transducers or probes on trailing leads, which may be applied superficially to the patients skin or into a body cavity, to facilitate a variety of clinical procedures. These would be stored on the outside of the imaging and electronics unit described above;
- a separate or integral thermal printer for the instant production of single hard-copy images, displayed as soft-copy on the monitor screen;
- data cable links to a PACS or remote hard-copy laser printer. In order to effect this link, a secondary data capture unit may be provided, separate from the main unit;
- optionally, a medical video recorder for moving images, which would be integrated with the ultrasound trolley arrangement.

Procurement and replacement

11.11 The pace of development of ultrasound technologies and their construction is such that they require more frequent replacement than other types of diagnostic imaging equipment such as MRI and CT scanners. Health Boards entering PFI or partnering agreements should allow for this from the outset and a replacement policy reflecting technology-led changes in clinical practice should be factored into the payment structure.

Imaging approach

11.12 From the dynamic image, individual ‘stills’ can be selected and saved as part of the record of the examination. Ultrasound machines may have an internal image hard disk storage capacity of up to 10,000 images to facilitate this operational requirement. Clip storage, which can be digitally recorded, is common. The stills may be printed out using a thermal printer integral to the ultrasound machine for incorporation into the patient’s notes. A more permanent
record may be acquired by use of remote or local dry laser printers. Alternatively data may be saved to a full or mini PACS system. It is also possible to make video recordings of the examination, using a VCR mounted on the ultrasound machine for subsequent review, or to save the images to a CD-ROM. These can be reviewed at a separate workstation close to the ultrasound suite.

11.13 Policy on the extent to which ultrasound images are filed with the notes of the patient examination may vary. For instance, the written notes may be regarded as the principal record, with ultrasound images only occasionally being included with these notes. Alternatively, local policy may be always to retain at least one image with every note of an examination. Video footage is usually kept for a short period for review or teaching purposes. Policy regarding image retention will determine the space requirements for film storage and processing equipment. Retention of images for cardiac applications may be longer than for other applications.

Clinical and operational objectives

11.14 Ultrasound examination has a wide range of current clinical applications. Within a general ultrasound suite the predominant application may be 30 to 35% obstetrics, followed by, in order of decreasing frequency, general abdominal work (for example liver or kidney examination), gynaecological work and then miscellaneous vascular/paediatric/small body part work. An overview of clinical ultrasound investigations is listed below. As for other imaging examinations, there may be a requirement to use contrast enhancement media. Some specific instances of this are outlined below.

11.15 Ultrasound examination procedures are dynamic, producing a black-and-white or coloured moving image, which is viewed and assessed at the screen of the ultrasound machine itself. Coloured imaging may be used particularly to distinguish blood vessels and blood flow.

11.16 Listed below are some of the common procedures undertaken in an ultrasound suite. They are described in Appendix 3: Glossary.

- obstetrics and gynaecology;
- abdominal work;
- acute appendicitis;
- vascular and cardiac imaging;
- use in combination with other modalities and techniques – DVT;
- prostate and testicular scanning;
- interventional techniques including intra-luminal ultrasound;
- lymph node imaging in support of cancer;
- paediatric scanning;
- ultrasound mammography;
ophthalmology;
• tumour imaging;
• musculoskeletal;
• Thyroid placement;
• CVC placement.

Patient journey

Referrals to a unit within a diagnostic imaging department

11.17 Patients may be referred for ultrasound examinations:

• by a GP;
• by a referring clinician from another out-patient clinic;
• as a result of other diagnostic investigations;
• as part of an assessment sequence in combination with other modalities such as MRI, X-ray mammography;
• from a ward as an in-patient.

11.18 The proportion of in-patients to out-patients will vary according to local demands and provision. As an indication, a general ultrasound unit that is part of a diagnostic imaging department may deal with approximately equal numbers of in-patients and out-patients during a 'core' working day, possibly with dedicated out-patient sessions after 5 pm. In addition, urgent examinations for in-patients may also be handled outside core hours.

Attending the examination

11.19 Imaging examinations may typically last between 10 and 20 minutes. Paediatric examinations may take slightly longer. Interventional and biopsy procedures will take longer depending on complexity and may last up to one and a half hours.

11.20 Patients may arrive for their appointments in the examination room either on foot, wheelchair, by hospital trolley or bed. For some examinations, patients will be required to change into a hospital gown, and appropriate facilities should be provided close to the examination room.

11.21 Patients are typically examined whilst lying on an examination couch, although some procedures, such as the examination of varicose veins, require the patient to stand.

11.22 Scans may typically be undertaken by a physicist or radiographer/technologist, sometimes called a sonographer, or in some instances a general radiologist. For examinations outside the main diagnostic imaging department, examinations may be undertaken by appropriately trained clinicians.
11.23 Particular attention must be paid to patient privacy, especially for the more personal examinations and particularly those that involve the use of body cavity transducers.

11.24 For some obstetric and gynaecological examinations, there may be a requirement for patients to be scanned with full and empty bladders during the procedure. WC facilities, with access for people with disabilities, must be conveniently available. See paragraphs 11.58 to 11.60.

11.25 Patients will not usually receive GA for imaging examinations, in contrast to those undergoing interventional procedures, so recovery and preparation areas are not required. However, in some procedures, such as ultrasound-guided amniocentesis tests, the patient may be administered some form of local anaesthesia. Occasionally patients may require sedation, particularly paediatric patients and patients undergoing transoesophageal studies.

11.26 Patients may be accompanied for their appointment by relatives and friends, who may be present in the room at the time of the examination and close to the examination table.

11.27 In some cases, and unlike most other types of diagnostic imaging examinations, the clinician will be at the side of the patient and may discuss clinical findings, during and immediately after the examination, particularly if these are considered relevant to the conduct of the procedure.

Exit from the examination

11.28 Following their examination, patients may return home, to the out-patient clinic, to the ward or, in some cases, may remain in the department for further examinations, consultations or counselling. Patients who have attended obstetric scanning appointments may wish to leave the department through a side exit and not through the main entrance to the department, particularly if this involves walking through crowded waiting areas.

11.29 Where out-patients have been examined by the use of body cavity imaging probes, a facility should be provided where patients can recover or recuperate before returning home.

Patient journey special case – interventional procedures

11.30 For interventional procedures, ultrasound imaging will be used to guide the insertion and placement of medical devices in the patient. A common example, found in most DGHs, is the use of ultrasound-guided biopsy. In some cases, the ultrasound may be used to guide the placement of therapeutic substances such as cytotoxic drugs in patients with some types of cancers or metastases. However, this procedure is more commonly undertaken in tertiary referral centres.

11.31 In-patients or out-patients may arrive at the unit as described above and will always be required to change into a hospital gown. Interventional procedures may be carried out under GA or, more commonly, particularly for biopsy
procedures, using local anaesthetic, possibly mixed with light sedation. The duration of the procedure will be much longer than imaging examinations, as noted above. The anaesthesia may be induced either in a combined recovery/preparation area or within the actual ultrasound room itself.

11.32 Following the procedure, the patient will need to recover from the anaesthetic in a local recovery room, possibly followed by a transfer of the patient to a ward or day case area for observation, before returning home.

List of accommodation and location of the ultrasound suite

11.33 Refer to Appendix 1: Example plans.

11.34 The accommodation required to provide a general ultrasound imaging service with interventional work and within a diagnostic imaging department should include the following:

- a number of general ultrasound imaging rooms or bays, in some instances as part of a suite, to meet operational and local requirements. The number of rooms required will depend on the number of expected patients identified at the business planning stage and the length of working day. It should be based on an average of three patients per hour. Demand for ultrasound imaging facilities may be expected to increase and allowance should be made for this expansion;

- at least one interventional ultrasound procedures room, again based on local requirements. It is expected that up to 15% of all ultrasound procedures undertaken will require some form of intervention. An average throughput would be one per hour. As an indication, one ultrasound room equipped for intervention work should be provided for every two imaging rooms. These rooms should be designed to allow for both imaging and interventional work;

- if the department undertakes obstetric and gynaecological examinations, at least one-third of the imaging rooms should allow for direct adjacent access to patient WC facilities. En suite WCs may be appropriate for interventional facilities, depending on patient age category. Further guidance is given below;

- separate sub-waiting areas for ambulant, wheelchair, trolley and bed-bound patients with associated WC with access for people with disabilities. This facility may be shared with other diagnostic imaging modalities, except for radionuclide imaging and PET;

- a counselling room directly adjacent to those rooms used for obstetric and gynaecology scanning;

- a recovery/preparation area for patients undergoing interventional procedures. These activity spaces may need to be provided separately, depending upon patient numbers;

- a superintendent sonographer’s office;
• a small sub-reception area for patients. This should not be shared with a main department reception;
• changing cubicles. The number required will depend on the procedures undertaken, ratio of out-patients to in-patients and the changing method used;
• an area for the storage of records pertinent to ultrasound examinations;
• a clinical storage area to support interventional procedures.

11.35 The following accommodation will also be required but may be shared with the wider diagnostic imaging department:

• radiologists’ offices;
• storage of linen and general clinical supplies;
• disposal bays for waste materials;
• processing and review facilities including video review;
• staff rest, changing and WC facilities.

General planning issues

11.36 It is advisable to group the ultrasound imaging rooms together within a department, as this will allow some sharing of facilities. Waiting areas for patients should not be located near those for radionuclide imaging and PET facilities.

11.37 Where ultrasound is used to support the detection of breast cancer in symptomatic patients, there may be a requirement to integrate ultrasound facilities with X-ray mammography and some limited pathology facilities. Further guidance is given in SHPN 54: Facilities for Cancer Care Centres.

11.38 Where it is proposed to undertake general ultrasound imaging outside the main diagnostic imaging department, the suite design will be similar to that for a general ultrasound imaging room.

11.39 The clinical use of ultrasound is expanding rapidly and it is probable that this will continue into the near future. Therefore, where possible, additional space should be allocated for future expansion. In some instances it may be appropriate to convert a general X-ray room into additional ultrasound facilities. This will depend on local and regional requirements for general X-ray examinations.
Room and equipment descriptions

General ultrasound imaging room

11.40 Facilities for general ultrasound imaging should be provided in separate rooms, with doors, to ensure patient privacy and confidentiality. The doors should not be fitted with automatic door closers, as this makes moving the ultrasound equipment in and out of the room difficult. The floor area of a general ultrasound imaging room will be slightly greater than that for a typical examination room. In some situations, for example in a specialist paediatric care unit, it may be appropriate to carry out ultrasound imaging in adjacent bays opening onto a support space. Each cubicle will require curtains to provide visual privacy. See paragraph 11.53.

11.41 Room decorations, finishes and general dimmable lighting should be to standard clinical design. The room should be easy to clean, attractive and relaxing. It should be noted that carpets are inappropriate.

11.42 Typically patients are examined whilst lying on an examination couch, which should be height-adjustable, and electrically powered. Powered operation requires a conventional 13A supply with some form of battery back-up. Conventionally, and for right-handed clinicians, the operator and the ultrasound machine will be to the right and at the head of the patient. This arrangement may need to be reversed for left-handed operators and the layout of the room should allow for this. The operator's seat should be height adjustable and mounted on castors or other arrangement for easy movement.

11.43 The examination equipment and couch need to be readily moved within the examination room, for ease of bed or trolley access, coupled with flexibility in undertaking the majority of the examinations. Doors or curtained access should be a minimum of 1500mm wide.

11.44 A clinical wash hand basin should be provided within each examination room/cubicle, with elbow-action taps. This is essential for hand-washing between each consultation or examination.

11.45 In common with any diagnostic imaging facility, the provision of oxygen and vacuum services should be considered in each of the bays or rooms.

11.46 A standard twin wall-mounted X-ray film viewer is required within each ultrasound room. A similar viewer will be shared by any adjoining bays, if provided. Viewers should be provided even if PACS or an imaging network has been installed. Worktop space should accommodate an RIS terminal and in some cases, an additional computer workstation to view stored or current diagnostic images. The technology to combine the functions of RIS and image management into one workstation is currently available. A small amount of cupboard space should be set aside for QA Phantoms, test objects and other peripheral items or attachments that may be used in some examinations. Facilities should be provided for cleaning and sterilising transducers.
11.47 Low lighting levels are required when viewing images on the ultrasound unit’s monitor and the X-ray viewers. High lighting levels are needed when the ultrasound units are being repaired or maintained. Lighting design should be similar in nature to that of an interventional fluoroscopy room, where a combination of independently operated spotlights and fluorescent lights are provided. Dimmer switches should be provided for the spotlights to allow for variable levels of illumination. Windows should be fitted with blackout blinds to achieve proper viewing conditions for the ultrasound monitor, but this will prevent the opening of windows for natural ventilation.

11.48 The high heat output of ultrasound machines and their sensitivity to high ambient temperatures necessitate the inclusion of air-conditioning if opening windows are not available. If the temperature in the room is above or near manufacturers’ tolerances then the ultrasound units may be susceptible to longer periods of downtime and shortened replacement periods. The provision of air-conditioning will also maintain comfortable working conditions for the operators and patients during examinations.

11.49 The examination couch has a cloth cover, plus a paper roll cover that is changed between each examination. Local linen storage is therefore required within each examination room. The paper roll dispenser is mounted at the foot of the examination couch, although it can also be mounted at the head of the couch. Dust from this paper can impede cooling fans/filters within the ultrasound equipment, therefore special low-dust paper should be used.

11.50 Special gels and lubricants are used to couple the ultrasound probe to the patient to minimise the reflection of the sound wave from the patient’s body. This has to be wiped from the patient at the end of the examination. As a result ultrasound procedures generate large quantities of waste with linen requiring disposal containers. Paper couch covers and disposable gloves will also require disposal facilities. A large pedal-operated disposal bin will be required within each examination room/cubicle, and may need to be emptied several times a day.

11.51 As stated in paragraph 11.23, patient privacy and confidentiality is pivotal and acoustic shielding should be provided in ultrasound examination rooms and cubicles.

11.52 The sonographer or general radiologist may report on the examination just after its completion. Digital or analogue dictation facilities may therefore need to be included for this purpose.

Changing facilities

11.53 The requirement for changing facilities will vary according to the number of outpatients. In-patients are likely to arrive by trolley/bed or on foot in dressing gowns. The ratio of changing cubicles to examination rooms should be at least one to two although this may have to be increased, depending on the method employed to store the patient’s clothes. At least one changing room should allow for disabled access and assisted changing. Alternatively, examination
rooms may be sized and fitted out to allow changing within the room itself, but at some reduction to patient throughput.

Sub-waiting areas

11.54 Separate sub-waiting areas should be available for patients who have changed into hospital gowns and for those who are waiting in their ‘outside clothes’. Space for at least two beds should be provided for those attending as in-patients.

Special cases

Paediatric ultrasound imaging

11.55 Ultrasound is a particularly appropriate imaging modality for the examination of children, because of its speed, simplicity and avoidance of cumulative radiation exposure. In a specialist paediatric centre, the use of a number of adjacent curtained bays may be more appropriate for this category of patient. This will allow economy of layout and the use of shared supporting facilities, such as storage and hand-washing.

11.56 A WC, suitable for use by people with disabilities, must be provided en suite for each group of bays. This should include baby-changing facilities.

11.57 Consideration should be given to providing ceiling-suspended video monitors for entertainment and distraction during examinations. These should be cabled to a central video player within the suite. Other devices to occupy patients during examinations, such as mobiles and projector units, should also be considered. Bedside couch seats for parents are required.

Special requirements for obstetric and gynaecological ultrasound

11.58 Some types of obstetrics and gynaecological examination procedures require scanning of the patient twice. For the first scan the patient has a full bladder. The second takes place after the bladder has been emptied. This necessitates adjacent patient WC facilities, ideally en suite, for some examination rooms.

11.59 The outcome of some obstetric examinations may be distressing for the patient and it is advised that these patients have the option to leave the ultrasound department by a side door, rather than having to leave via waiting areas. Some members of this group of patients may prefer to wait in a nearby counselling room before making their way home. The patient should be able to move to the counselling room without having to go through the waiting area.

11.60 Ultrasound facilities used for obstetric scanning should, for privacy reasons, always be fitted with a door, if the door has a glazed panel it should be fitted with a blind. The design of the room should always include some form of acoustic noise insulation. Bedside couch seats for partners should be provided.
Facilities for vascular ultrasound

11.61 Some procedures, such as examination of varicose veins in the lower leg, require the patient to be standing. The patient may be elevated by use of a step-up stand with handrail, to ease staff access to the lower leg area. Space for a step-up stand should be provided within the examination room.

Interventional/intraluminal ultrasound special environment

11.62 Up to 15% of the procedures within a typical general ultrasound department are likely to be ‘interventional’ or invasive. This proportion will increase gradually as the techniques and imaging devices improve. In principle, the interventional procedures undertaken involve the use of ultrasound scanning to guide an invasive medical procedure. One example is the taking of a liver biopsy sample via a fine hollow needle introduced percutaneously, i.e. through the skin.

11.63 GA is not common in the majority of adult interventional ultrasound procedures, but local anaesthesia will probably be used, in combination with sedation. For paediatric patients, GA will almost certainly be required.

11.64 Radiology nursing staff, a sonographer and, possibly, an anaesthetist may assist the interventional radiologist during the procedure. Therefore five staff may be present. In addition, one or two other members of staff, students or researchers may need to be present for training purposes.

11.65 Standard sets or sterile packs of surgical instruments are pre-prepared elsewhere in the hospital or procured directly from manufacturers. Smaller and more specialised items will be laid up on trolleys before the examination. Most items used in the procedures are for single use only and will usually be thrown away after the procedure.

11.66 Ancillary accommodation required close to or adjacent to the interventional ultrasound room is listed below:

- a recovery/preparation area;
- a small nurses’ base area;
- sterile storage facilities for the sterile packs brought into the department and also for linen.

11.67 For centres undertaking large numbers of paediatric ultrasound procedures, it will be appropriate to provide en suite WC and nappy-changing facilities.

11.68 According to local hospital policy, anaesthesia may be induced and the patient recovered in the ultrasound room before being returned to the ward. This may obviate the need for a separate recovery/preparation area, but will have an impact on possible patient throughput.

11.69 The space allocated to the area and the provision of separate recovery and preparation rooms will depend on operational requirements and the number of patients who may need to receive some form of anaesthesia or recover
following their procedure. There may be some scope for combining the recovery area with those provided for X-ray or MRI interventional procedures.

11.70 The interventional ultrasound room will be different in design and overall layout to the general ultrasound room described above. In general terms it will be larger and may include two separate entrance doors. One of these should be large enough to accommodate patients on beds and trolleys.

11.71 All surfaces should allow for high standards of cleanliness and minimise the areas where dust and other particles can collect. Because of the heat generated by the ultrasound equipment, higher occupancy levels and the need to control infection, air conditioning should be provided to give at least eight to ten air changes per hour. The interventional ultrasound room may also be appropriate for the examination of barrier-nursed patients who are infectious and for patients who may be more susceptible to infections. Clinical hand-washing facilities will be required, possibly in the form of scrub-up sinks, within the room.

11.72 General room lighting should be dimmable, similar to that in interventional X-ray fluoroscopy rooms, to provide clear viewing of the ultrasound images displayed on the integral machine monitors and of relevant X-ray films displayed on accompanying wall-mounted X-ray viewers or PACS workstations. In addition, a procedures lamp should be provided, of either floor or ceiling-mounted design.

11.73 Full anaesthesia facilities are required, including piped oxygen and vacuum coupled with piped or bottled anaesthetic gases. An anaesthetic gas scavenging system should be provided where anaesthetics are used. See paragraph 11.63.

11.74 Reasonable worktop space is required, in combination with base units. As an indication, at least 3000mm run of worktop will be required for general clinical activities. In addition, further worktop space should be provided for RIS/PACS workstations. In order to avoid dust accumulation on top of wall cupboards, sloping tops should be fitted or units extended and sealed against the ceiling.

11.75 Equipment to be accommodated will include the patient procedure couch, a high specification mobile ultrasound machine, an anaesthesia/patient monitoring trolley, stainless stool operating theatre style stools, two or more lay-up trolleys, drip stands and disposal skips for the majority of types of clinical waste. For generalised room layouts together with equipment sizes refer to Appendix 1: Example plans.

Special notes regarding earthing and power supply arrangements

11.76 Refer to Appendix 2: Engineering requirements and SHPN 03: General design guidance.
12. Computed Tomography

Background and information

12.1 CT scanning is a form of cross-sectional imaging that combines X-ray images from a number of different projections to form single or multiple images. Instead of using film to detect the X-ray beam, a bank of solid state detectors is used to acquire the data from the different projections. Doses in some procedures can be relatively high when compared to other diagnostic imaging techniques.

12.2 The CT scanner is mainly used for scanning of emergency cases in association with the A&E department, in diagnosis and treatment of cancer, abdominal and neurological imaging, where formerly X-rays on plain film would have been used. In order to meet the modern imaging requirements, multiple CT scanners may be procured and located appropriately for their use.

12.3 A dedicated suite of rooms is required for a CT scanner and X-ray shielding will be required for the scanner room. It is not uncommon to build a CT scanner suite in conjunction with an MRI unit, but this is not essential. However, economies of scale can be achieved, especially in support areas, if this approach is adopted.

12.4 The main technical elements of a CT scanner are as follows:

- a CT scanner gantry;
- a couch which is located directly adjacent to the scanner;
- a power distribution unit;
- a control console and associated computer.

12.5 CT technology is advancing rapidly. New units can acquire images spirally. Multi-slice or multi-detector units are now becoming available but these have enhanced protection and installation requirements.

Spiral CT scanning

12.6 The advantages of spiral CT scanners over conventional single slice units are:

- patient throughput is faster;
- large volumes of anatomical information can be obtained quickly and easily;
- speed of scanning is increased, thus giving greater access to minimally invasive interventional techniques performed in the CT suite or examination room, such as image-guided biopsy procedures;
- physiological and more detailed anatomical information can also be obtained, particularly when using contrast media in combination with spiral CT scanning.
12.7 To take advantage of the faster throughput available on the CT scanner, patient flows through the unit or department must be carefully planned with considerable emphasis on the integration of patient support services, such as portering, patient transport, and waiting spaces.

12.8 The design of the room also needs to reflect the greater use of interventional procedures, particularly biopsy work conducted under imaging control. For example, the use of CT-guided biopsy of the para-aortic lymph nodes can give a reliable diagnosis in suspected cases of lymphoma with virtually no morbidity. This is a great improvement on the types of procedures used previously. The design of the suites should therefore permit such procedures to be undertaken. This implies higher standards of infection control and ventilation and, for example, the incorporation of a small scrub-up area either within the scanning room or located in an adjacent area.

Clinical and operational objectives

Vascular applications

12.9 Although X-ray angiography, radionuclide imaging and, potentially, MRI will continue to be the major modalities in the investigation of cardiac and vascular disease, CT still has a role to play in determining some types of aortic disease, particularly aortic aneurysms. The advent of multi-slice CT scanners and more powerful reconstruction computers with ever-decreasing scan times may see the role of cardiac CT expanding outside the research and tertiary centres.
12.10 The use of CT may replace a large proportion of radionuclide ventilation and perfusion of VQ scans in the detection of pulmonary embolism. This technique, particularly when performed on newer multi-slice scanners with solid state detectors, has been shown to have greater sensitivity and specificity in cases where the initial chest X-ray has shown signs of abnormality. In the UK, spiral CT may be regarded as the gold standard for the investigation of this disease, in preference to pulmonary angiography which has never become established because of difficulties in performing the investigation. In some circumstances, the use of spiral CT may supersede the use of radionuclide scanning in a number of cases. Therefore, the use of Krypton instead of Technetium aerosols may become more economic.

CT angiography

12.11 CT angiography is used to examine the patency and physiology of the vascular system. This is achieved by imaging the patient whilst simultaneously administering a contrast agent intravenously. The administration of the contrast media is usually undertaken remotely from the control room by the radiographer/technologist and integrated into the scanning protocol.

12.12 Operational policies may require a nurse or radiographers/technologists to be in the examination room when the contrast media is administered, to ensure that it is not tissued and to comfort the patient during the procedure. In such instances, the staff member will need to leave the room relatively quickly before scanning is initiated and the hazards from trailing leads should be considered.

12.13 A separate device needs to be incorporated into the CT scanner room for this procedure and its ergonomic positioning needs careful consideration. The use of this device is not exclusive to CT angiography and is used in a number of CT scanning procedures.

Surgical planning

12.14 Images from CT will be used to plan and assist a wide range of surgical procedures. The surgeon or a member of her/his team may wish to review the images acquired, or perform image processing, before undertaking the surgery. For throughput and access reasons, this should be carried out on a second cross-sectional workstation. This is further described below in both the CT and MRI sections.

Thoracic scanning

12.15 CT has emerged as one of the pre-eminent techniques for the imaging of thoracic pathologies.

12.16 Thoracic CT is used commonly where the findings from a chest X-ray are doubtful or normal and further diagnostic investigations are deemed appropriate. For example, subtle changes in perfusion and ventilation associated with small airways disease and diffuse infiltrative lung disease are only shown on high-resolution CT scans. CT can also demonstrate primary
tumours and metastases in the lung and mediastinum, where the chest X-ray has shown no abnormalities. In some of these cases, therefore, CT can have a large impact on the care and treatment received by the patient following the examination. However, due to the relatively large effective doses to the lungs, a number of departments utilise protocols which try to discourage the use of CT examinations except where the scan can have a large clinical benefit and directly affect the treatment pathway.

12.17 A number of centres, particularly those outside the UK, have looked at the possibility of using low dose CT techniques on modern scanners for the screening of lung cancer in pre-defined categories of patient. The results are thus far questionable, but if such measures were to be implemented, even on a localised pilot basis, the number of referrals for CT investigations would increase. Departments may, therefore, have to provide a second smaller unit to support the main system installed.

Radiotherapy treatment planning

12.18 CT may be regarded as essential when undertaking treatment planning for conformal and intensity-modulated radiotherapy. The ability of CT to produce electron density maps depending on tissue type is necessary in planning therapies which maximise the dose to the tumour volume and minimise it to surrounding structures. The high spatial accuracy of CT also minimises inaccuracies in the planning and treatment process. The ability of spiral CT to acquire volumetric information means that this planning process can be undertaken in three dimensions. It is common to co-register CT and MRI data, in order to give better visualisation of the tumour being treated.

12.19 For a CT scanner to be used in radiotherapy treatment planning, the examination room must be equipped with two orthogonal lasers, aligned with the centre of the CT scanner in the horizontal plane. This is to ensure spatial accuracy in the planning target volume (PTV), from the acquisition of the anatomical information, planning simulation and eventual treatment. The lasers used are Class 2 devices, and as such there are no particular built environment hazards associated with their use. See MDA Guidance Notes on the safe use of lasers in medical and dental practice.

12.20 The CT examination room will have to incorporate an additional mattress specifically designed for RTP purposes, together with appropriate accessories.

Patient journey

Patient information

12.21 Most patients will receive information about their prospective procedures from the person or organisation that refers them. However, it is unlikely that this will be either complete or sufficient for most patients’ peace of mind and by the time patients receive details of their appointments, more specific information will be available. This information will probably be in written form. Should more detailed
questions arise, it is recommended that a patient information centre be provided.

12.22 The patient information centre may contain interactive computer systems with CD-ROMs and DVDs which can be interrogated by both staff and patients to provide whatever extra information is required. Alternatively, this information may be available from the World Wide Web, therefore access to the Internet, under appropriate supervision, may be needed.

Appointments

12.23 Appointments can be made by the GP or by the consultant responsible for the in-patient or out-patient’s care. The time lapse between making the appointment and the scan is necessarily governed by the clinical assessment of the urgency and the severity of the condition suspected.

Biopsy and interventional work

12.24 As a result of the CT scan, it is possible that further investigation of the patient’s condition in the form of biopsy or other interventional work will be required. This will be necessary where the diagnostic CT or MRI scan, for example, has shown the presence of a suspected malignant tumour or metastases. The patient will then be referred again to CT, where the biopsy will be carried out under imaging control.

Referrals from CT

12.25 If the patient has a surgical or other type of implant, such as a pacemaker or cerebral aneurysm clip, which is contradictory to MRI scanning, they will be referred for CT scan instead of MRI. Additional information should be given to the patient before attending the MRI examination in respect of contraindications to this form of scanning.

ITU and A&E referrals

12.26 In the case of a referral from ICU, HDU or A&E, allowance will have to be made for ancillary equipment that may accompany the patient to the CT scanning unit. Such equipment could include patient ventilation devices, monitors and volumetrically-controlled drug delivery systems. An ICU patient will be transferred to the CT scanner on their hospital bed. All routes to the CT suite should therefore be sized to facilitate patient transfer by bed.

Patient preparation

12.27 Fifty per cent of patients will be in-patients brought to the CT suite from a ward and fifty per cent will be visiting as an out-patient, possibly as part of a co-ordinated exercise involving attendance at a clinic or other procedures such as radiotherapy-simulation.
For out-patients, initial attendance will be to a reception area, where the receptionist may also be responsible for ensuring a careful check on the patient's identity. Details of the study to be performed will be dealt with through a referral form or as computerised information read by the radiographer/technologist. In some modern facilities, the study data can be downloaded automatically to the CT scanner itself, from a networked RIS system.

It is possible that children and adolescents may require a degree of immobilisation either in the form of full GA or by means of a lesser form of sedation. Facilities will therefore be required for the administration of the GA or sedation and for all associated engineering services, that is, piped medical gases and anaesthetic gas scavenging, appropriate colour corrected lighting, together with ventilation and power sources. The administration of the anaesthetic can be carried out in the CT scanner room or in a clinical preparation room immediately adjacent to the CT scanner room. The choice of administration protocol will depend on local hospital policy.

Some patients may require physical immobilisation using such items as head restraints and restraining belts, thus rendering physically immobile a patient who may have been anaesthetised.

Immovilisation is of particular importance when using CT for radiotherapy treatment planning, as even the slightest movement of the patient during the scan will degrade the spatial accuracy of the image produced, thus making it difficult to transfer the relevant spatial information from the CT to a treatment simulator or a linear accelerator.

The scanning process

Out-patients will change from their outdoor clothes into hospital gowns. Changing cubicles should therefore be provided. A small sub-waiting area where patients can wait once changed and prior to their session in the scanner, should be provided immediately outside the changing cubicles. This area may be shared with other diagnostic modalities such as MRI. Patients who have changed into hospital gowns should not mix with patients who are still in outdoor attire.

The patient will be collected by one of the CT radiographer/technologists and escorted into the scanning room. Before the patient is moved onto the scanner couch and positioned appropriately, the radiographer/technologist may need to attach accessories, such as a head or arm support. Once the patient is in position, the clinical staff will retire to the control area, at which point a planning scan will be initiated. Once complete and reviewed, the clinical staff will proceed to set up the machinery for the diagnostic investigation. This may involve tilting the gantry by as much as +/-30° about its central horizontal axis and sufficient space for the process should be allowed for in the scanner room. The patient on the scanning couch may be moved in and out of the centre of the CT gantry. Again, space must be made available for this and for unimpeded passage around the extremities of the couch. There is no requirement for the patient
couch to move vertically and horizontally in the same plane. Likewise, the scanner gantry will articulate to $+/–30^\circ$ in the vertical plane only.

12.34 On completion of the examination, the patient will be assisted from the couch and escorted to the changing cubicle, where they will change and make their way back to the main reception area.

12.35 Diagnostic images could be transferred to a cross-sectional imaging workstation, which may be shared with the MRI scanner or other diagnostic modalities, using an ethernet network or via the use of CD-ROMs. In this instance, the images will be assessed and reviewed by a radiologist in a reporting room and further post-processing work may be undertaken. The cross-sectional workstation may be used to transfer the images using a telemedical link to another location.

12.36 The workstation should be located in a small reporting area, separate from the control room, and facilities should be provided to allow the soft-copy reporting of images.

12.37 Alternatively, the diagnostic CT images may be laser printed and hard copy reported.

12.38 It is advantageous if the reporting process can be undertaken using a small LAN, possibly linked with WAN. The images can then be distributed digitally to the clinician within the hospital or via a telemedical link.

12.39 All CT suites will require an emergency controlled drugs cupboard, in case of contrast media reactions.

12.40 A warming cabinet for contrast media will be required.

12.41 Air as a contrast media is sometimes used in imaging examinations of the bowel or colon and usually requires an adjacent toilet to the CT examination room. Options are further described in paragraph 12.69. This procedure is sometimes used as a replacement for barium enema procedures.

Interventional CT

12.42 In interventional CT, anaesthesia may be administered before transfer into the procedure room if a dedicated anaesthetic/recovery area has been provided. Alternatively the anaesthesia may be administered in the procedure room and the patient can also be allowed to recover in this area. However, the latter alternative will reduce throughput. The method chosen will influence the services, schedule of accommodation and sizes of rooms.

12.43 To protect clinical staff in the scanning room during the procedure, protective lead-lined coats will be worn, together with thyroid shields and lead glass spectacles. Storage for these protective garments will be required and the store should be located outside the scanning room. Within the room, it is possible that there will be a requirement for a lead glass screen, which can be floor, wall or ceiling-mounted, the latter in a similar manner to an operating theatre lamp.
12.44 If interventional CT is to be undertaken in the examination room, the finishes should utilise a Class 2 or 3 ceiling design which can be used in Scotland. (See HTM 60.) The floors and walls should have no cracks or joins and should have coved skirtings, to avoid infection hazards from lodged substances.

12.45 The images obtained during an interventional procedure will usually be viewed using a trolley-mounted monitor, which will need to be sufficiently mobile to be visible to the consultant radiologist working at either side of the CT scanner.

List of accommodation for CT

12.46 The following accommodation is considered necessary in addition to the CT examination or scanner room:

- a reception and main waiting area;
- a sub-waiting area for patients who have changed into smocks or gowns;
- a bed or trolley-holding area. This may form part of the sub-waiting area as described above. Additionally, this may be shared with the MRI suite;
- changing cubicles, which should be compliant with the Disability Discrimination Act 1995;
- preparation/recovery area for patients who are/have been anaesthetised; *
- clean and dirty utility rooms. These may be shared with other modalities;
- scrub-up areas, which will be needed if the radiologists are undertaking any form of interventional work in the CT scanner room. This area may be shared with the CT suite or located adjacent to both the MRI and CT suite. Space for this activity should be allocated even if it does not form part of the short-term operational requirements as it is likely that the building will house two or three generations of CT scanner and as such the requirement may change over time;
- a scanner control room for control of the CT scanner; *
- a reporting room which may contain the cross sectional imaging workstation and other appropriate reporting facilities;
- a counselling room, which may be shared with other modalities that are particularly pertinent to Cancer Centres;
- a small porters’ base to facilitate the moving of in-patients to and from the CT or CT/MRI suite.*

Could be shared with MRI in a joint MRI/CT suite.
Room descriptions and location of CT

Siting requirements

12.47 If the CT scanner is located in a diagnostic imaging department, it is essential that 24-hour access is available from A&E. This will require appropriate security. Referrals from A&E are likely to form the main referral pattern for CT outside conventional or extended working hours, although referrals from ICU and wards are not uncommon. The correct relationship of the CT department to A&E is very important.

12.48 If a high proportion of the CT scanner's use is for cancer patients, consideration may have to be given to locating another dedicated CT scanner within the oncology centre. This should be determined at the business planning stage for the new Cancer Centre or unit. This should not preclude the use of the dedicated scanner for other purposes, although its use for A&E patients may prove difficult.

12.49 The provision of an additional separate CT scanner in A&E may be considered necessary in some larger departments or hospitals. However, co-operation between the A&E department and the diagnostic imaging department should allow each to provide additional capacity for the other and back-up services when the A&E scanner is not working or is undergoing routine maintenance.

12.50 There is requirement for a two-way link with the pathology department, for the transfer of biological specimens and other similar items. The control area or the CT scanner room itself could be the location for the link, which could take the form of a pneumatic tube.

12.51 It is advantageous for the CT scanner suite to be located adjacent to the MRI suite, although care should be taken in respect of magnetic field considerations. The modalities are similar in that they acquire 2D cross-sectional diagnostic images. Imaging radiographers/technologists may be trained in both CT and MRI, so there will be some capacity for staff sharing, if a shared CT/MRI control room is provided. A single radiologist may be able to cover both a CT and a MRI session, which may be helpful when members of staff are on annual leave.

12.52 If the CT scanner is to be sited on an upper floor of a building, a lift, accessible either from a side or main entrance, should be capable of lifting weights up to about 2 to 3 tonnes. The gantry of a CT scanner is delivered as a single unit and cannot be dismantled. If the lift is not large enough, or is unable to take the weight of the scanner gantry, then the equipment may have to be put in position by crane.

12.53 The overall size of CT scanner gantries is increasing. It is therefore advisable to make the examination rooms larger than required, particularly if this trend continues with the advent of combined radionuclide and CT imaging equipment. It is especially important not to 'shrink wrap' the design of the room around a particular type or model of scanner.
12.54 Internal cooling may be required for the components located within the CT scanner gantry and the associated power distribution unit. Manufacturers of CT equipment may require a chilled water supply and an external chiller unit should be located somewhere close to the CT suite. In some cases this can be shared with the units provided with MRI scanners. See paragraph 13.40.

Ancillary accommodation

12.55 The scrub-up and sterilization facilities will be the same as for a minor operating theatre suite. The recovery room, which will also be used for the administering of anaesthetics, will require piped medical gases and gas scavenging. The recovery room will be much smaller than an operating theatre recovery area, providing space for only two beds and a small nurse’s station for observation purposes. Storage space should be provided to meet future requirements.

12.56 Sterilization of medical devices should be undertaken in an SSD, in accordance with hospital policies.

12.57 Clean and dirty utility rooms should be provided adjacent to the CT scanner room, particularly if interventional work is planned or undertaken, and may be shared with the MRI suite if appropriately located.

12.58 If treatment of children and adolescents is anticipated, a dedicated activity area may be required, to occupy the children whilst waiting for their scan and as a facility for siblings whilst scanning is undertaken. This could take the form of a small annex to the main waiting area, or may be contained in the main waiting area itself. In this case, good visibility from the reception area to the play area is essential.

Reception

12.59 The reception serves both as a reception for patients and as the point at which the details of newly-arrived patients are checked and verified. Where the CT scanner is located in a main diagnostic imaging department, the main reception area could be shared with other modalities or, alternatively, if the CT scanner forms part of a separate combined MRI/CT department, the reception area should be provided and sized accordingly. A description of a typical reception area is given in NHS Estates guidance HBN 40 vol 1, Common activity spaces.

12.60 In a combined MRI/CT satellite facility, the reception counter may have space for one or two reception staff, depending upon the number of patients who may attend for CT examinations. The CT reception counter should be located and designed so that its presence is obvious to patients and escorts when entering the suite.

Patient sub-waiting area

12.61 A sub-waiting area is required so that small numbers of patients and escorts can wait before, during and after a CT examination, as appropriate. The sub-waiting area provides an alternative to waiting in a patient preparation room.
Patients may be fully dressed, partially dressed or wearing only procedures gowns. Privacy from the main waiting area is essential.

The sub-waiting area should be comfortably furnished with different types of seating, so that the needs of the elderly and children are also addressed. This area should provide occasional tables for reading material and include a wall-mounted panel where information can be displayed. Access to refreshments should be provided.

The sub-waiting area should be adjacent to the patient preparation rooms, close to the interviewing room with easy access from the main waiting area and to the CT examination room.

Chairs in the patient sub-waiting areas should be covered with non-absorbent materials that are easily cleaned in order to deal with patients who are incontinent, vomiting and possibly receiving intravenously-administered therapies.

Space should be provided in the sub-waiting area for out-patients arriving in wheelchairs.

Bed/trolley/wheelchair waiting area

This waiting area is required for in-patients arriving by assisted transport. The bed/trolley/wheelchair area should be located within the CT suite. The area should be separate from other waiting areas and provide space for patients to wait before being transferred to the CT trolley. Space will be required for nurses and others attending the patient and for additional equipment being used by the patient. In combined MRI/CT suites, care should be taken not to confuse the trolleys designated for MRI and CT use.

Patient toilets

WC facilities for patients should be provided close to the main waiting area and sub-waiting area. At least one WC close to each area should have access for a wheelchair, space for assistance to be given and grab rails.

In some instances the CT room is used for examination of the colon and part of this examination is achieved by distending the organ by the use of air. In addition, contrast media may be administered during this imaging procedure. Following or during this examination the patient will need to visit the WC and therefore the provision of additional facilities should be considered. The location of this WC in relation to the CT scanner room should be carefully planned.

Changing cubicles

A minimum of two dedicated changing rooms should be provided for the CT scanner. Ideally these should not be shared with other modalities. Lockers could be provided for the storage of patients’ valuables, or the shopping basket approach, described previously, may be appropriate.
Anaesthetising (preparation)/recovery area

12.71 The anaesthetic/recovery bay is used for the induction of, and recovery from, anaesthesia for patients requiring a general or local anaesthetic, or sedation. Two or more of these bays may be required. Each bay may be used by the patient, either on a trolley or a bed. Space for up to four staff members working in and around the patient is required, together with a small staff or nurses’ base.

12.72 If deemed clinically appropriate, patients from A&E could wait for a short time in this area while the scanning room is prepared for their examination.

12.73 A two-position anaesthetic/recovery bay is normally adequate, on the assumption that the small number of patients who may require anaesthesia/sedation will be interspersed with patients who do not require anaesthesia/sedation. If it is intended to group all patients requiring general anaesthetic in one session, then project teams should give consideration to patient flow issues and the adequacy of a two-position bay. Patients may arrive on a bed, a trolley or in some cases, particularly where interventional procedures are undertaken, may be admitted on a day case basis.

12.74 If this facility is to be shared with the MRI examination room, the provision of a two-bay facility may not be adequate.

12.75 In specialist paediatric hospitals, virtually all patients will require sedation or general anaesthesia before their examination, making the provision of separate anaesthetic and recovery areas appropriate. A member of the paediatric nursing team, and, possibly a relative, will accompany a child patient.

12.76 The patient is anaesthetised/sedated on the bed or trolley on which they arrive, and is transferred to the CT room using a trolley.

12.77 The bed or trolley can be parked in the anaesthesia/recovery area bay until the patient is returned. The patient will be returned to the bed or trolley for recovery and subsequent exit from the CT suite to complete pre-discharge recovery elsewhere in the hospital.

Design considerations

12.78 Privacy and an environment with minimal disturbance are important. The anaesthetic/recovery bay should have walls on three sides and cubicle curtains to the opening and between each position.

12.79 There should be:

- adequate space around the patient in each position, on a bed or a trolley, for staff to move and work and for equipment to be moved and parked while in use;
- a clinical washhand basin, paper towel and soap dispensers;
- a sink unit;
- a worktop for laying out instruments;
• storage units for drugs, sterile supplies and infusion fluids;
• a lockable cupboard for the temporary storage of controlled drugs issued to an anaesthetist for one session;
• a lockable refrigerator for the storage of drugs.

12.80 The anaesthesia/recovery bay should be close to the CT scanner room so that the anaesthetist can quickly and conveniently move between the two spaces.

Clean and dirty utilities

12.81 Clean and dirty utility rooms are required. These should be shared with other modalities. Refer to HBN 26, together with SHPN 26, both titled Operating Department, and HBN 40: Vol 3, Common activity spaces: Staff areas for further guidance.

CT scanner room

12.82 The CT scanner, or examination room, will accommodate the CT scanning unit and the associated patient couch, which will be integrated with the CT scanning gantry and limited storage facilities. The patient may be accompanied by a carer and up to five staff members, particularly patients attending from A&E or possibly HDU/ITU, who will remain until the examination is ready to begin.

12.83 The CT scanner should be aligned diagonally to the patient observation window so that the radiographer/technologist is able to see the entire length of the CT scanner together with the centre of the scanner gantry. This arrangement is illustrated in Appendix 1: Example plans.

12.84 There should be sufficient space for the transfer of a patient from a bed, trolley or wheelchair to the scanner couch. Usually, a radiographer/technologist and, possibly, an assisting nurse will accompany the patient. The use of a patient slide or a hoist may be required to transfer the patient from the trolley to the CT examination couch.

12.85 Where equipment failure occurs, it may be necessary for a patient to be moved quickly from the scanner. Resuscitation of the patient can be undertaken in the examination room following respiratory or cardiac arrest and therefore the provision of resuscitation equipment and a cardiac alarm should be provided.

Scrub sinks

12.86 Scrub sinks should be provided in the CT scanner room, particularly if the institution is considering undertaking interventional radiology procedures. Refer to HBN 26 together with SHPN 26, both titled Operating Department, for details.

Design considerations

12.87 The patient should be provided with an environment that is comfortable and reassuring, promoting both patient comfort and co-operation and reducing stress to patient and staff. Care should be taken with the interior design of the
examination room in order to provide a calm, reassuring environment for anxious patients. Designers should not simply provide spaces that satisfy functional requirements: they should aim to create an aesthetically-attractive environment, which inspires confidence in the service being offered and helps to minimise anxiety.

12.88 Doors should provide radiation protection levels similar to those provided for the walls, ceiling and floor in terms of lead equivalent values. This may be between 2.5 and 4mm of lead equivalent construction at 150kV, but exact levels should be agreed with the RPA. The door must open into the room, providing shielding for people who accidentally enter the room during scanning.

12.89 A separate door between the scanner room and control room for members of staff is essential. The doors must be visible from the control area so members of staff can see anyone entering the examination room. Patient entrance doors must allow access for trolley, wheelchair or King’s Fund beds supplemented with patient monitoring equipment and drip stands.

12.90 Suitably-sized access should be available to allow replacement of the gantry of the largest CT scanner currently available. Consideration should also be given to floor-loading.

12.91 In addition the following should be included in the CT examination room:

- space for all clinical procedures. This may include a requirement for infection control and physiological monitoring (for example ECG and pulse oximetry);
- clinical hand-washing facilities;
- finishes suitable for regular cleaning and the easy removal of spillages and accidents. Floors should be seamless with coved skirtings;
- anti-electrostatic floors, as sensitive electronic equipment will be used in the room;
- adequate storage space for quality assurance equipment, contrast media used in the examinations, sundry clinical items including blankets, and immobilisation devices including those used to support the patient during the examination, such as additional head supports;
- worktops for routine tasks, assembling equipment, administration tasks and supporting equipment, such as a worktop-mounted unit for warming contrast media prior to use;
- adaptations to the room for high volumes of paediatric patients as appropriate;
- stacking chairs for occasional use;
- a trolley for CT fluoroscopy work. Space will be required on both sides of the patient couch to suit either left or right handed operators;
- the CT scanner may be operated by a foot switch and care is required over the positioning of this device to ensure operational requirements are met, whilst eliminating hazards from trailing leads;
where the CT scanner is used for planning purposes, laser alignment devices for Radiotherapy Treatment Planning (RTP) will need to be incorporated in the design of the room, with the generator located outside the room, possibly in the control area;

- medical gases, such as wall-mounted piped oxygen and vacuum;
- a wall-mounted emergency ‘off’ switch, if none is provided on the scanner gantry;
- variable-level lighting, provided by a mixture of fluorescent lights and spotlights, particularly if interventional procedures are to be undertaken in the CT scanner room. Low levels of lighting are required for viewing monitors and laser positioning lights. High levels of lighting are needed for maintenance procedures;
- intercom between scanner and control rooms (normally integral to the scanner);
- a separate technical room is not normally required for modern CT scanners, as the majority of electronics are now incorporated in the scanner’s gantry. Additional space should be allocated within the examination room for a power distribution unit and, possibly, a small computer;
- a CCTV camera at the ‘head’ end to help monitor the patient. When the couch is moved right through the gantry, the patient cannot be easily seen;
- a coloured CCTV monitor behind the CT scanner;
- floor or ceiling-mounted, articulating arm, contrast media injector cabled to the CT scanner. In some instances the radiographer/technologist will need to leave the room quickly, just before the administration of contrast media, to ensure that the contrast media does not tissue. Hazards from trailing leads should be avoided.

Design considerations where interventional work will be undertaken

12.92 These are as follows:

- a scrub sink;
- medical gases such as oxygen and vacuum;
- anaesthetics for undertaking interventional procedures or when scanning seriously ill patients. Ceiling-mounted pendants could be provided to allow access to these services;
- anaesthetic gases and scavenging by the use of piped or trolley-mounted services;
- air-conditioning, with a minimum of ten air changes per hour;
- dimmable lighting within the examination room, to allow the operator to view the mobile monitors;
- ceiling or floor-mounted special procedures lamp;
- the use of a sealed ceiling. This may be appropriate to control levels of infection;
• worktop space possibly needed in the CT room to allow the pathologist to prepare a specimen for further analysis following the completion of a biopsy.

Planning relationships

12.93 The scanner room should be adjacent to the control room. It should also be close to the patient preparation rooms, the sub-waiting area, and the anaesthesia/recovery bay and conveniently located in relation to the reporting room. A dedicated toilet accessed directly from the scanner room may be needed, depending on the number of examinations of the colon undertaken by the centre.

Control room

12.94 The control room is used to control and monitor the scanning process in the CT scanner room. Activities will include:

• operating the scanning equipment;
• monitoring the images on a VDU;
• communicating with the patient via an intercom;
• observing the patient through the shielded observation window and CCTV;
• performing tasks related to the images being obtained, such as archiving on to a storage device or controlling the processing of hard-copy images;
• carrying out administrative tasks. Part of this administration will be undertaken using an RIS terminal, although in some instances the RIS may be directly interfaced with the control workstation.

Design considerations

12.95 The number of staff involved will vary from patient to patient and depend on the treatment they are receiving. Up to seven members of staff may be present at any one time, including radiographers/technologists, radiologists, visiting oncologists and surgeons, escorting nurses and the anaesthetics team. In teaching institutions, trainees may also be present in the control room to observe some procedures.

12.96 The following design considerations are relevant for the CT control room:

• access to the CT scanner room should be controlled and/or authorised from the control room;
• the control room should be completely shielded from the CT scanner room.
• doors opening into the CT scanning room should be equipped with two stage warning signs. They must open into the room and incorporate lead shielding to the same level as the enclosure to the scanner room;
• the door to the control area from the main staff or public space should be lockable, although access will be required for 24 hours in most instances for A&E cases;
- good observation of the patient being scanned from the control desk or workstation must be achieved through the lead glass observation window. The patient may also be observed by the use of CCTV;
- a wall-mounted triple X-ray viewer is required for viewing films. This may be required even if the hospital has moved to a full digital approach for the storage and handling of radiological images;
- a worktop should be provided adjacent to the console where staff can sit to read and write;
- a fireproof storage area is required for patient records and magneto optical disks. This could be located under a worktop;
- a locked storage area is needed for manuals, which will need to be accessed by visiting engineers and scientists. This could be located within the examination room if space is limited;
- shelving will be needed for educational materials;
- a dry laser printer may need to be incorporated for the printing of CT images, but this will depend on whether the control room is adjacent to a processing area;
- lead coats and other protective clothing, which will be needed during interventional procedures or when examining seriously ill patients, could be stored in the control area or just outside the examination room. These clothes can be heavy and consideration should be given to wall loading.

Service considerations

12.97 Mechanical ventilation or air conditioning should be provided to maintain comfortable working conditions.

12.98 Natural daylight would be beneficial, although the lighting will need to be dimmable for viewing monitors and undertaking maintenance.

12.99 To observe patients, a CCTV monitor will be needed in the control room.

12.100 An emergency stop switch will be required in the scanner room.

Planning relationships

12.101 One control room can serve more than one scanner, and may for example, be appropriate for serving two CTs and an additional MRI scanner. There should be sufficient room for the separate consoles, but other facilities can be shared.

Reporting and image review room

12.102 This is described in paragraphs 3.132 - 3.138.
Counselling room

12.103 Where possible a counselling room should be provided within the CT suite, particularly in relation to cancer care. This could be shared with other modalities. A description of this room is provided in Section 15: Ancillary patient accommodation. See paragraphs 15.17 - 15.19.
13. Magnetic Resonance Imaging

Background and information

13.1 The imaging process of MRI depends essentially on placing the whole body, or a selected body part, into a very intense standing magnetic field. This field, which in modern applications will have a magnetic field strength between 0.1 and 4 Tesla, has the effect of slightly realigning the axes of spin for chemical species present in the tissue or body to be imaged. The most prolific chemical species is hydrogen and, therefore, the proton, so that the huge majority of imaging focuses on a change in energy for this particular species. Much of the hydrogen in the human body exists as water. The extent to which the energy of the water is modified is directly related to the magnetic field strength. This has led to a recent push from 1.0T to 1.5T and most recently toward 3T machines being used in diagnostic imaging departments. The movement toward greater magnetic field strengths has important implications for the built environment. These high-strength machines are heavier, have increased electrical requirements and may require greater magnetic shielding than their lesser counterparts.

13.2 The powerful magnetic field described in the outline above does not itself generate the signals that are responsible for imaging. Instead, these are produced by subjecting the body or volume of tissue within the strong magnetic field to an additional field, in the form of radio frequency radiations. This second field disturbs the spin axis or direction established by the primary magnetic field. As the proton or other species recovers from this RF-induced disturbance, radio frequency energy is released and it is this signal that is used to generate the images. The magnitude of this signal is very small, implying that the receiver needs to be very sensitive and extremely well protected against other radio signals, such as those used for communication and entertainment. For this reason, virtually all MRI systems will be fully enclosed by a Faraday cage, which is itself tied electrically to earth. This special cage is normally referred to simply as an RF cage. In addition to keeping out unwanted signals, the cage also prevents the signal generated by the MRI from interfering with equipment elsewhere, although this is a lesser challenge.

13.3 Clearly, this still leaves the challenge of determining where the signal arises within the patient. Without information on the origin of the signal, only chemical analysis would be possible and no image can be produced. In order to overcome this challenge, the MRI machine also incorporates gradient coils. These modify the otherwise homogeneous magnetic field present in the imaging volume of the MRI, so as to slightly shift the frequency of radiation emitted from the proton species. This slight shift can then be decoded to show where the emitting atom or species is located within the body. Hence, MRI has a full three-dimensional imaging capability. In environmental terms, the presence of these gradient coils is a significant challenge because they are very powerful electrical devices and require auxiliary services such as high load power supplies, water...
cooling, mechanical ventilation and air conditioning, both within the MRI imaging room itself and in the associated engineering or machine rooms. In recent years, these gradient coils have, like MRI machines in general, become much more powerful and have a much higher standard of performance. This means that the engineering challenge and the requirement to successfully accommodate the engineering elements within the built environment continue to rise, though the equipment itself is getting smaller.

Signal detection

13.4 As described above, a very sensitive radio frequency coil is used to receive the small signal generated by the patient’s tissue. Such are the specialist requirements and demands of clinical work that, although a whole body receiver coil will be incorporated into almost all MRI scanners, there will also be a need for body part-specific coils. These will include special coils for the imaging of joints, but in the context of cancer, modern flexible coils are likely to be employed. These coils may be brought into direct contact with the body surface and are exceptionally powerful in terms of tumour detection and imaging. The coil portfolio of a modern MRI may run to as many as a dozen or more devices and thus the room must be designed to accommodate their ready storage and preparation for use.

Static magnetic field production

13.5 The very large static magnetic field required is difficult to generate. Essentially there are three possible ways of generating the magnetic field. These are described in the following subsections.

Permanent magnets

13.6 For low power scanners, a very large permanent iron magnet may be used. Whole body scanners weigh between 1 and 30 tonnes and will therefore have significant implications in structural terms, but since no energy is consumed in maintaining the magnetic field, operating overheads are reduced. It should be noted that the magnetic field of a permanent system cannot be switched off.
addition, small body part scanners are available for imaging limbs and joints. These have much simpler installation requirements as described below.

13.7 Although the permanent magnets have no direct cooling requirements, the gradient coils and other devices associated with the magnets may require cooling. This is further outlined below.

Resistive magnets

13.8 Resistive or electromagnetic systems represent the second option. These are powered directly by three-phase supply and have a very heavy continuous electrical consumption, normally in the range 30 to 50 kilowatts. The resistive magnet has the advantage in that the field can be removed by simply interrupting the power supply to the generating coil. Since most of these systems incorporate the use of an iron core and may weigh up to 100 tonnes, their installation requirements are considerable. In a resistive magnet, cooling of the magnetic field coils is effected by the use of a closed chilled water supply.

Cryogenic magnets

13.9 Thirdly, and by far the most common, are super-conducting electromagnets, which are maintained at very low temperatures by cryogenic cooling. These are usually referred to as cryogenic magnets and operate at temperatures generated by liquid helium enclosed within a very large Dewar flask of volume between 750 and 2000 litres. The magnetic coil enclosed within this Dewar flask will be capable of superconductivity. In consequence, after the very large initial current of between 150A and 400A has been inserted during the commissioning process, the system will remain intensely magnetic with super conductive current flow. Should it be necessary to remove the magnetic field then the super conductive current must itself be interrupted.

13.10 Cryogenic MRI scanners have sophisticated valves to permit the addition of helium, but they also have quenching or discharge valves. The latter valves are connected by a large diameter tube to a safe point outside the building, from which huge volumes of helium, in a ratio of about 5000:1 to the liquid volume, may be discharged quickly. See Medicines and Healthcare products Regulatory Agency (MHRA) guidance notes. Such processes are not routine and are only applied in the event of incident or accident. The only exception would be during the decommissioning of the magnet at the end of its useful life. For cryogenic systems, the machine will incorporate one or more cold-heads, which are concerned with minimising the consumption of helium through thermal losses. These cold-heads will be closed circuit and incorporate a compressor. Small interruptions to the power supply of the MRI may be tolerated, in particular to the cold-head. However, should the magnet temperature rise significantly, gas loss will occur. Not only does this have significant implications in cost terms, but also restoring the magnet operation may be delayed. Thus there are a number of important electrical engineering parameters in this area. These are outlined later in this section.
Gradient coils

13.11 Water-cooling may be used for gradient coils, although some designs are simply air-cooled. Water supply, whether for cooling or for use at a sink or wash-hand basin, is a particular challenge for MRI. The water supply, like all other services and connections, must enter the MRI imaging room through the RF cage. As this entry will inevitably create an aperture through which radio waves can proceed, a wave-guide or blocking structure must always be employed. These items are frequently integrated into a so-called RF pad. All MRI installations will contain at least one and, more commonly, two such devices.

Trends in MRI imaging

13.12 There are three distinct classes of MRI scanner. These are:

- Specialised MRI scanners, which have been designed for niche applications, such as orthopaedics;
- Whole body imaging systems, where the technology has improved to allow for higher field strength magnets at lower cost. Newer machines, which are currently being installed in the UK, have field strengths as high as 3.0T and weigh as much as 15 tonnes. Their availability and use in the UK for general clinical use would conflict with current MHRA Guidelines for magnetic resonance diagnostic equipment in clinical use;
- Specialised cryogenic and non-cryogenic electromagnets, which are designed for interventional and imaging work.

Clinical and operational objectives

13.13 Over the last 10 to 15 years MRI has become part of the standard equipment portfolio. The modality is of particular interest in the following clinical areas.

Cancer imaging and diagnosis – general case

13.14 MRI is useful in the diagnosis and staging of cancer, owing to the ability of the technique to selectively image soft tissues, including both benign and malignant tumours, at potentially high resolution. In some instances, disease detection and imaging sensitivity of MRI may exceed that of CT, though this is not universally the case. In the detection of masses, the scanner is essentially being used to generate cross sectional images of the body, which may be reformatted to other projections, in pursuit of resolving issues concerning the presence or absence of masses.
Figure 13.1: Example of a high field superconducting MRI system

Image supplied by IGE Medical Systems

Figure 13.2: Idealised layout of an open MRI system allowing for imaging procedures only

Image supplied by Siemens Medical Solutions Ltd
13.15 In many instances, MRI may be used as a secondary imaging technique. For example, in breast care it will follow the use of mammography or ultrasound. In some instances, the use of MRI to detect and quantify masses reduces the pressure for exploratory surgery and may offer much better definitions of the limit or boundaries of the mass concerned, though there is considerable academic debate in this area.

13.16 In some cases, the appearance of a tumour in an MRI scan can offer important differential diagnosis evidence. For example, the invasion of surrounding tissues or organs by a nucleated mass may be detectable and thus the likelihood of malignancy can be ascertained. Equally, fibrotic coats and other characteristics of benign tumours are sometimes well imaged by MRI, though the applicability varies greatly with tumour type and anatomical distribution. In some instances, a differential diagnosis may be enhanced by the use of differing scanning techniques, or by the introduction of Gadolinium-based contrast media, the most commonly used contrast media. The enhancement or otherwise of masses when Gadolinium-based contrast media is injected intravenously may be clinically significant.

MRI angiography

13.17 Many MRI systems are capable of generating angiographic images by so-called Time of Flight (TOF) or phase contrast, both of which use characteristics of the signal from moving fluids, or by the use of an injected contrast media.

Figure 13.3: Image of a typical MRI scanner room

Image supplied by Wardray Premise Ltd

Note: sound insulation is required on all sides and at wave-guide cavities.
Tumour staging

13.18 The principles of tumour staging are briefly described in SHPN 54: *Facilities for Cancer Care Centres* and depend upon the application of a series of rules to the business of characterising a patient’s condition. MRI is, for some tumour types at least, the method of choice in determining the stage categorisation. However, it is unlikely that MRI will be used alone and its use in conjunction with radionuclide imaging, bone scanning and a range of other techniques is much more common.

Treatment planning

13.19 Although MRI does not have the ability to give a direct reading of electron density or data related to linear accelerator X-ray beam dose distribution, it is nevertheless useful in treatment planning. Firstly, MRI information may be applied in locating the treatment target to reasonably high levels of precision and accuracy. Unlike CT, there are difficulties in that MRI lacks intrinsic spatial calibration. Secondly, the modality is of great value in determining the location, potentially within the treatment field, of vulnerable structures such as the spine. These would be damaged by excessive irradiation, giving rise to difficult or unacceptable morbidity, with consequent loss of quality of life. Additionally, the ability of MRI to define the margins of some tumours is helpful in ensuring that tumour definitions or outlines are well-informed.

Figure 13.4: Engineering for the integration of a radio frequency shielded door

Image supplied by Iomedco Ltd

Note: the integrity of the teeth should be checked regularly.
13.20 MRI data itself can be used directly in the planning process, within the constraints mentioned above. Equally the digital merging of CT with MRI data can overcome some of the limitations described. In particular, this process can be used to generate better spatial relationships in calibration as well as providing the electron or tissue density information, which MRI itself lacks. Accordingly, the use of merged CT/MRI data is increasingly common in the treatment planning process. The majority of RTP computers are able either to generate the merge process themselves or to receive merged data from other machines. In this context, the increased use of conformal therapy and IMRT may further stimulate the already substantial demand for MRI scanning in relation to radiotherapy treatment planning.

13.21 As the techniques used to administer chemotherapy drugs move toward a philosophy in which the drug is administered more directly to the tumour, MRI's usefulness in assisting in the accurate placement of catheters and other devices used for direct drug delivery may be expected to rise. This correlates with a much broader rise in the use of MRI for intervention generally. Much of this intervention will be geared towards cancer treatment.

Cancer surgery

13.22 The viability of surgery will frequently be affected by the combination of mass size and tumour staging information. The method of approach, or in sophisticated work, the trajectory for a surgical episode may benefit greatly from the availability of MRI images which will demonstrate not only the tumour itself but also the overlying tissues and location of vascular structures. Increasingly, MRI will be regarded as indispensable to the planning of modern cancer surgery.

Clinical follow-up

13.23 Follow-up scanning is closely related to tumour staging. Essentially the principle is to monitor the effectiveness, or otherwise, of any treatments that are given. The regression of a tumour, or loss of size, may be an important indicator as to the success of any chosen treatment option. Follow-up scanning may mean that the patient is moved from a less successful to a more applicable treatment regime should this be indicated.

Further clinical uses

13.24 The following clinical uses have been identified:

- orthopaedic scanning services. A comprehensive orthopaedic scanning service, including GP referred lumbar spine examinations and MRI arthroscopy;
- a general musculo-skeletal scanning service. This may be useful for sports medicine and medico-legal applications;
- neurological diagnostic scanning;
• a broad-based paediatric scanning service, replacing other examinations using ionising radiation, particularly CT;
• abdominal medicine/gynaecology/pelvic imaging. This will mainly be in support of the examinations undertaken in CT, but it should be noted that MRCPs are gradually replacing conventional ERCPs using X-ray fluoroscopy;
• some centres may be interested in developing cardiac imaging to supplement existing X-ray cardiac angiography services;
• MR angiography. This area has been of particular interest since the relatively wide spread use of contrast media for these investigations. The majority of Health Boards would like to provide a reliable service for imaging the carotid artery, though other applications may be developed;
• breast examinations. MRI mammography scanning services are used to supplement the X-ray mammography work already established clinically. The outcome of the current Medical Research Council (MRC) MRI mammography trial and the work carried out by Dr David Scott of the Christie Hospital, Manchester will greatly influence the use of this clinical practice.

The patient journey and the concept of magnetic controlled area and safety principles

13.25 Safety within and in the vicinity of the MRI examination room should be governed by local rules, which should be based on the MDA guidelines for Magnetic Resonance Imaging and those recently published by the NRPB. Some of the text within this section on MRI makes use of this guidance and the reader is referred to these documents for further reading.

13.26 In the majority of cases the patient will be visiting as an out-patient, possibly as part of a co-ordinated exercise involving attendance at a clinic. A small number of patients will be in-patients brought to the MRI suite from a ward. These will also need to be accommodated within the suite design.

Reception

13.27 For out-patients, initial attendance will be to a reception desk, where a number of key questions will be asked and the process of assessing the suitability of the patient for MRI scanning begun. In particular, there is an immediate need to assess whether or not the patient has a pacemaker or is connected to any physiological monitoring device. This assessment should be made by the radiographer/technologist or a nurse and the patient may or may not proceed for scanning. Normally all pacemakers are rejected unless the very latest MRI-safe type has been implanted. The receptionist will also be responsible for ensuring a careful check on the patient’s identity, though the details of ascertaining the study to be performed will be dealt with through a referral form or as computerised information read by the radiographer/technologist. In some very modern facilities the study data can be downloaded automatically to the MRI scanner itself.
Patient's interview and checklist

13.28 A member of the professional team, most commonly a radiographer/technologist or nurse, will undertake a checklist with the patient and, if necessary, involve the referring clinician or physicist. This checklist will cover the following key areas:

- confirmation of the absence of a cardiac pacemaker or pacing line, as the static magnetic field generated by the MRI scanner can interfere with its proper function;
- presence of other implants or prosthesis. It is particularly important that this covers orthopaedic devices and dental plates. Where there is an ambiguity, aneurysm clips being the most common example, the patient may be sent for an X-ray. Alternatively, the patient’s notes may be consulted before the decision to scan is taken;
- presence of programmable internal devices which can be reset by MRI;
- presence of intra-ocular foreign bodies, such as shrapnel and other metallic objects in the eye socket, should be ascertained before scanning;
- patients who have a confirmed pregnancy and are in the first trimester. They may be excluded from scanning, depending on local policies;
- patients who are liable to fitting or who suffer from claustrophobia. They may require counselling or direct clinical supervision before they can be accepted for scanning;
- sundry precautions against hazards, which might be caused by the attraction of metallic objects to the MRI. Accordingly, the patient will be asked whether they are wearing any items containing metallic components, including jewellery and wristwatches;
- although unrelated to safety, practical common-sense dictates that the patient should be asked to remove all credit cards and similar materials that may be erased by exposure to the magnets.

13.29 The checklist should always be completed in private as otherwise some patients may be unable to discuss sensitive or difficult matters. Access to a more private room may therefore be necessary. This could be a shared counselling and interview room.

13.30 For in-patients, the MRI checklist will often be dealt with before the patient is taken from the ward. This simplifies procedures in the MRI suite and reduces the time the patient needs to spend outside the care of ward staff. The checklist available in the ward may not always be up-to-date and it is therefore safer to carry out the checklist in the MRI suite.

Patient changing

13.31 Depending on the anatomy to be examined, the patient will normally be asked to change into an examination smock. All valuables and common metallic objects will be placed in a locker, so that they are not taken into the examination
room itself. Plastic or aluminium keys are used for these lockers so that the patient may retain possession of them during treatment. See paragraph 13.41.

13.32 Hearing aids could be damaged in the MRI examination room or the MRI scanner bore itself and should not be worn. However, patients with hearing loss will need to hear and understand instructions from staff before, during and immediately after the examination. MRI units are equipped with pneumatic speech systems and in some instances ear tubes can also be attached. For the profoundly deaf, no satisfactory mechanism for communication is currently available. At least some of these patients, together with those who have aneurysm clips or some other disqualifying implant, are likely to be referred for CT scanning as an alternative to MRI. Scanning of profoundly deaf patients is, however, possible with the assistance of a third party to pass on instructions as necessary. If this can be arranged, the radiation dose associated with CT scanning can be avoided.

13.33 The patient will be taken into the scanning room by a member of staff. Unescorted patient access is not permitted. Generally, the patient will be positioned on the couch, which is height adjustable and aligned using reference light beams, supplemented by external lasers as needed. The patient will then be mechanically conveyed into the aperture of the MRI scanner to the scan plane.

13.34 The scanning process itself is semi-automated and will be controlled by the radiographer/technologist located at a control station, which should afford a reasonable view of the patient. It is important that the radio frequency (RF) door is closed before scanning commences. See Figure 13.4. Music systems may be installed to make potentially prolonged periods of scanning more tolerable. Entertainment systems are normally restricted to sound only but MRI compatible television is available.

13.35 Some patients may receive a single scan only. More commonly, scans will be grouped together into compound protocols targeted on the clinical purpose. It is common for patients to undergo a number of scans at different parameters, giving differing images of the same anatomy and also for angiographic examinations to be performed as part of the same exercise. In the majority of cases, only a single imaging coil will be employed, but most modern MRI scanners can utilise several such coils together. In the absence of this capability, it may be necessary for the radiographer/technologist to re-enter the room at the end of each scanning sequence to change the coil in use and/or reposition the patient.

13.36 Following scanning, it is usually unnecessary for the patient to remain within the bore since the data can be reviewed very quickly. A decision on supplementary scanning may, in certain circumstances, require a consultation. It may therefore be necessary to transmit the results of the examination to a computer workstation elsewhere. Where this is the case, the patient may be asked to wait until feedback is received from that member of staff. When this happens, the radiographer/technologist, or other assisting staff members, should ensure the patient is kept informed of developments so that he/she remains comfortable and as calm as possible.
13.37 The patient is removed from the scanner by a simple reversal of the loading process using the mechanically-driven couch. Ambulatory patients will not normally be detained in the MRI suite following scanning. In-patients will be taken back to the ward by a porter, with an escort if necessary.

Patient preparation area/anaesthesia and recovery area

13.38 A small proportion of adult patients and not more than 30% of children may require heavy sedation or anaesthesia and have a somewhat different scanning process. For infants a feed-sleep procedure is often effective. In cancer centres, as distinct from more general MRI facilities, anaesthetics will normally be administered outside the MRI scanning room and maintained during scanning by the use of piped gases and appropriate monitoring. This means that a room for the administration of anaesthetics will be required in some suites, particularly those concerned with children. After scanning, patients will require recovery time, though it is unlikely that the workload, even in a highly specialised centre, would justify a recovery room separate from a room in which the administration of anaesthetics takes place.

Trolley and wheelchair storage area

13.39 Patients with disabilities have special problems in gaining access to MRI services. Wheelchairs are unlikely to be suitable for entry into the MRI room though entry to the surrounding suite should not represent a difficulty. In order to maintain satisfactory DDA access, it will be necessary for MRI departments to have access to MRI-safe wheelchairs and trolleys. These must be carefully labelled to avoid confusion. As an alternative some designs of MRI scanner permit the scanning couch to be detached from the rest of the assembly so that it may be taken out into the reception/waiting/patient preparation area and the transfer of the patient accomplished there. For patients who have particular difficulties with movement or who are suffering pain, this solution may often be the most satisfactory. Facilities for the storage of specialist trolleys and wheelchairs must be included.

List of accommodation and facilities for whole body imaging suites

13.40 In addition to examination room(s) the following rooms should be provided:

- a patient preparation area used for inducing anaesthesia and patient recovery following the examination. In some exceptional centres where high numbers of children are examined or large numbers of interventional procedures undertaken, separate facilities may need to be provided. This could be shared with CT or X-ray interventional vascular or non-vascular work;
- engineering or technical room for the installation of the gradient coil cabinets, compressor and RF generator;
• main and sub-waiting areas for patients. The main waiting area may be shared with CT or another modality, except those for radionuclide imaging and PET, because of the radiation risks;

• a control room for housing the main workstation computer, the radiographic staff and other healthcare professionals during scanning. This may be shared with another modality such as CT;

• a small area to allow the storage of a non-magnetic trolley and wheelchair for use in the MRI scanner room;

• dedicated changing facilities for staff and patients, which comply with the DDA;

• office(s) and or reporting facilities for the clinical interpretation of diagnostic images. This may be a combined facility with other modalities;

• accommodation for visiting professionals. This may take the form of ‘hot desk’ space within the control area;

• a reception and storage area for patient records. This may be shared with the main reception area for CT;

• clean and dirty utilities particularly if interventional work is to be undertaken in the examination room. This may be shared with other modalities;

• business manager’s or administration office, where MRI and possibly CT are separate from the main department;

• chilled water supply generator. This may supply chilled water to more than one modality and does not have to be adjacent to the MRI examination room or suite;

• counselling or interview room.

Room and equipment descriptions

Patient, staff and visitor lockers

13.41 A bank of small ‘cube’ lockers is required. Here patients, staff, escorts and visitors, under the supervision of an authorised person, who are entering the MRI scanner or examination room, can securely store items of personal belongings that may not be taken into the scanner room. The lockers should be provided with non-ferromagnetic keys, such as aluminium or plastic, which can safely be taken into the MRI scanner room.

Patient toilets

13.42 WC facilities for patients should be provided close to the sub-waiting area. At least one WC should be suitable for use by people with disabilities. Where space is limited, there may be some advantage in sharing this facility with the main waiting area or another modality suite such as CT.
Cleaners' store cupboard (dedicated for non-ferromagnetic materials)

13.43 A lockable cupboard for the storage of cleaning equipment should be provided within or adjacent to the MRI suite. Only dedicated non-ferromagnetic cleaning equipment should be kept in this cupboard.

13.44 The store should not be used for any equipment that may prove hazardous if inadvertently taken into the MRI scanner room. The examination room should be locked while unsafe equipment is being used nearby.

Resuscitation bay

13.45 Resuscitation equipment used in hospitals cannot be used in the magnetic field environment. Patients who have a cardiac or respiratory arrest must be removed from the MRI examination room and taken to a separate resuscitation area. Ideally, a separate area of similar design and construction to a single bed anaesthetic/recovery room should be provided. Because of space limitations this room may need to be shared with the facilities described below. Staff involved in transferring patients from the examination room should ensure that no unsafe items are brought into the room.

Anaesthetic/recovery area

13.46 In designing the anaesthetic/recovery bays, consultation should take place with the surgical anaesthetic team on equipment requirements and planning relationships with the rest of the department. Reference should also be made to the guidance produced by the joint working party of the Royal Colleges of Radiologists and Anaesthetists.

13.47 On the assumption that only a small number of patients may require anaesthesia or sedation, a two-position anaesthesia/recovery bay is normally adequate. If it is intended to group together in one session all patients requiring anaesthetic, then patient flow issues may require an increase in the number of bays. In specialist paediatric or larger institutions, or where large numbers of interventional MRI procedures are considered, it may be appropriate to have more bays, and separate resuscitation/anaesthetic rooms.

13.48 The patients are anaesthetised on the bed or trolley on which they arrive, then transferred to the 'non-ferromagnetic MRI trolley' to be moved to and from the MRI scanner room.

13.49 The bed or trolley can be parked in the anaesthesia/recovery area bay until the patient returns. The patient will be returned to the bed or trolley for recovery and subsequent exit from the MRI suite.

Design considerations

13.50 Privacy and an environment with minimal disturbance are important. The bay should have walls on three sides and cubicle curtains to the entrance and also between each position.
13.51 There should be adequate space in each bay around the bed or trolley for staff to move and work and for equipment to be moved and parked while in use. In larger facilities of three or more beds, the provision of a small nurse’s work-base will be appropriate. In addition, the following equipment should be provided:

- clinical wash-hand basin and accessories;
- a general sink unit combined with a worktop for laying out instruments;
- good provision of storage units for drugs, sterile supplies and infusion fluids and, in some cases, contrast media;
- a controlled drugs cupboard and refrigerator;
- a warming cabinet for heating contrast media to body temperature before administration.

Engineering features

13.52 Medical gases including wall-mounted piped oxygen, nitrous oxide, medical compressed air, medical vacuum outlets and anaesthetic gas scavenging should be fitted at the ‘head’ of each bay. Alternatively, oxygen and vacuum services could be provided in association with mobile anaesthetic services. All mobile service must be labelled MRI safe.

13.53 Electrical power sockets, intercom and telephone points and a staff emergency call point, in case of cardiac arrest, for example should all be provided.

13.54 It is preferable if each position is laid out in a manner similar to the anaesthetic rooms in a main operating department, to let common working practices be followed.

Planning relationship

13.55 The anaesthesia/recovery bay should be close to the MRI scanner room, so that the anaesthetist and assisting nurses can quickly and conveniently move between the two spaces.

Interviewing/counselling room

13.56 An interviewing/quiet room should be provided within or close to the MRI suite.

13.57 The interviewing room should be used for pre-examination discussions before a patient enters the examination room and may be used for some post-examination procedures or discussions.

13.58 The room should be comfortably furnished and include easy and upright chairs and an occasional table. A desk and chair should be provided to enable a member of staff to make notes while talking to a patient and/or escort.

13.59 The walls of the interviewing room should be constructed to attenuate sound and provide an adequate level of privacy. The room should be close to the patient preparation rooms and sub-waiting area, if provided, and easily accessible from the MRI examination room.
MRI examination room

13.60 The design of the MRI examination room should be clinical in character, but moderated to reduce anxiety to patients and, in some cases, carers and nurses. The MRI examination room will make up part of the inner controlled area. See MHRA Guidelines for magnetic resonance diagnostic equipment in clinical use. There will be a need for permanent signage to indicate the presence of a strong magnetic field and to warn people of the potential effects on pacemakers and ferromagnetic objects. Warnings may need to be given in a number of languages. The floor may also be marked to indicate the presence of the inner controlled area.

13.61 The number of persons in the room, in addition to the patient, will be between two and eight people, particularly if interventional work is a potential clinical function in the examination room, either with the proposed unit or as a future operational requirement. The current clinical requirements, patient care and throughput will influence the type of magnet procured. The room should be large enough to allow people to move easily between the end of the scanner couch and the adjacent wall. Where a cryogenic magnet is installed, the room should allow for large helium Dewars to be brought close to one side of the magnet for a cryogen refill. This will take place once every one to two years depending on magnet type and manufacturer. On-site storage for cryogens will not be required. The room should allow patient transfer to the patient couch with the use of a non-magnetic patient transfer trolley, even if the magnet is equipped with a detachable patient couch. This will ensure operations continue on occasions when the patient couch fails, which is more likely to happen as it gets older. It will also provide flexibility for future MRI systems.

13.62 All surfaces, including floors and ceiling, should be easy to clean and have minimal fissures to prevent or greatly reduce the ingress and spread of infection and dirt throughout the examination room. The suspended ceiling should be manufactured from non-magnetic components to ensure that it is not affected by the magnetic field. The furniture, including chairs needed when an escorting clinician remains with a patient in the examination room during a procedure, should be magnetically compatible. Chairs are usually plastic. A wash-hand basin and/or a scrub sink should be provided, possibly within the examination room, and should be designed using MRI-compatible fittings and fixtures. In essence, all fittings in the MRI examination room should be magnetically compatible, including those used in the construction of shelves, cupboards and other room fittings. Luminaries should be protected in case of bulb explosion. See also Appendix 2: Engineering requirements.

13.63 A large cupboard should be provided in the MRI examination room for the storage of receiver coils. The design of the cupboard should respect the lifting and handling policies that may be in force at the hospital, as some of the coils are heavy and difficult to manoeuvre. The spacing between the shelves of the cupboard should allow for the storage of all the receiver coils provided with the scanner. In addition, it should allow for storage of copper sulphate solution QA imaging phantoms, which are also bulky. Additional storage space should be provided for clinical items and contrast media, which are now used in a wide
range of examinations. The contrast media will be used in conjunction with a magnetically-compatible power injector, which may be either floor or ceiling-mounted. The function of this device will be integrated into the function of the MRI scanner to ensure accurate timing and delivery of the bolus. A nurse or radiographer/technologist may have to wait in the room during an examination to ensure that the contrast media has not tissued during the procedure.

13.64 The room should be equipped with an oxygen monitor to ensure that any helium gas leaking from the cryogenic Dewar is not moving into the examination room, thus displacing the oxygen and compromising patient safety. In addition, the room should be fitted with an emergency quench switch which should be protected against accidental use. This will effectively reduce the field of the magnet but multiple quenches may be required to bring the field down to safe levels. Additionally, the magnet may be fitted with emergency ‘off’ switches, which will suspend scanning and switch off power to the magnet sub-system, but will not quench the magnet. See paragraph 13.85.

13.65 The walls of the examination room will be made of a continuous copper RF shield, acoustic and, in some cases, magnetic shielding, coupled with more standard materials and construction methods. A cut away section of an MRI examination room is shown in Figure 13.3. The design of one of the walls may have to allow the removal of the old unit and delivery of a new MRI system and should be constructed to facilitate this activity or procedure. The door will need to be RF shielded and an RF window built in to the construction of the wall separating the control and MRI examination rooms, to allow the radiographer/technologist to see the patient when scanning. The door will need to be locked when the room is not being used to prevent unauthorised access, and the fitting of key coded key operated locks is advised. The window should be constructed to allow the radiographers/technologists to see down the centre of the scanner whilst maintaining an overview of the whole examination room. RF windows can be built into the design of walls that are directly adjacent to the outside of the building but it should be noted that this is an expensive option. If windows are provided, blinds should be fitted to allow variable lighting conditions in the examination room.

13.66 To maintain the integrity of the RF shielding, all services to the MRI examination room from adjacent control and technical spaces should be brought into the examination room using wave-guides. In this instance, these devices are effectively small copper pipes that are used to enable the electrical supplies and other services to enter the room without compromising the integrity of the RF shield. The length of the devices will depend on their diameter and is governed by a simple equation found in manufacturers’ literature.

13.67 The nurse call and clinical emergency buttons will usually be integrated with the function of the MRI system. All other patient monitoring facilities should be MRI compatible and connected to the patient using optical isolation devices. Power to these devices should be established using leads connected to sockets through wave-guides between the control and examination rooms.

13.68 Alignment and positioning reference beams for radiotherapy planning purposes are usually generated by a low power laser system. The use of fibre optic light
transmission from a generator located outside the scanning room should be considered to avoid possible problems of the magnetic field interfering with the generation system.

13.69 Piped anaesthetic facilities are an option for patients who require to be anaesthetised during the examination. Alternatively, this could be provided by the use of mobile trolley-based anaesthetic facilities. Piped anaesthetic facilities may be a requirement for paediatric patients or where hospitals are anticipating undertaking interventional procedures either now or in the future. If patients are to be sedated during an examination, then remote monitoring can be achieved, using a colour CCTV monitor located just behind the MRI scanner and linked to a colour monitor in the control room. If anaesthetic monitoring is used a slave monitor should be provided in the control room.

13.70 A minor-procedures or small operating lamp may be required for some procedures, although good down lighters generally provide adequate illumination. There are currently no MRI compatible minor procedures lamps available in the UK and such devices have to be made to order.

13.71 Where interventional procedures are contemplated, particular care must be taken to control infection. This will influence airflow and filtration, surface finishes and ceiling construction. The advice contained within HBN26 and SHPN 26: Operating department, SHTM 2025: Ventilation in healthcare premises and NHSScotland guidance SHFN 30: Infection control in the built environment may be of value.

Engineering or technical room

13.72 The engineering or technical room will house all the subsidiary equipment associated with the MRI scanner. These include the gradient cabinets and radio-frequency generators, which are used to power the receiver and gradient coils within the MRI scanner. The room may also accommodate a closed loop chiller unit, which would supply cold water to the cold head of a cryogenic MRI system to maintain the levels of liquid cryogen in the MRI scanner. The room may need to accommodate a large metal box for the storage of reference and maintenance manuals. The majority of the manuals are now being provided on CD-ROM.

13.73 The technical room should be located directly adjacent to the MRI examination room so that services between the MRI scanner and technical rooms can be easily installed with the minimum amount of cabling. In order to accommodate the distribution of services between the technical and examination rooms, it is customary to install a radio-frequency pad, which basically consists of high density wave-guides in a single location. The pad is covered by a wooden box for cosmetic purposes. In order to facilitate this arrangement a raised access floor may be provided, close to the rear of the MRI scanner when viewed from the control area.

13.74 Occupancy will be a minimum of two and a maximum of three persons. Space should be provided around the electronics cabinets, to allow access, including access when all cabinet doors are open, for engineers during planned
maintenance visits. This will affect the layout of the rooms. Only authorised persons may enter the technical room including engineers, radiographers/technologists and physicists. Access should be controlled by providing security locks on the entrance door. The door should be fitted with signs to indicate the presence of an electrical hazard. The room should be easily cleaned. Patients may not enter this area and members of staff and engineers will spend only relatively short amounts of time here. Painted block-work finishes are acceptable and no special considerations apply. Bright lighting conditions will be required to support maintenance of the gradient cabinets. The room must be maintained clean and dry at all times to minimise any problems with the gradient cabinets.

13.75 Storage space for bulky non-magnetic tools and QA phantoms may be required, depending on the space for these items allocated in the MRI examination room.

13.76 The gradient and radio-frequency generation cabinets will produce significant heat yields, particularly when scanning is initiated. The mechanical ventilation or air conditioning must be designed to handle the heat loads and maintain the environmental conditions within manufacturers’ tolerances.

13.77 The floor should be capable of accommodating high capacity trunking. The fitting of load bearing ‘computer’ flooring may be appropriate. An emergency ‘off’ switch should be placed in this room to shut down the electrical supply to the equipment in an emergency.

Control room

13.78 The control room will be used to control all MRI scanning processes and support clinical/technical discussions of the diagnostic imaging and treatment process. The design of the room should provide a high quality office character, with emphasis on maintaining a clean and dust-free environment. The room must be designed to incorporate a number of electrical and data connections between the technical room and MRI examination room. All single-phase 13A sockets should be placed above worktops and shelves in order to improve access.

13.79 The room must accommodate the MRI control desk and workstation, monitoring equipment, sundry file storage, safety equipment, computer media, sundry office functions and hard- and soft-copy viewing. Computer terminals for selected systems, which will vary locally, may include a RIS, PAS or HIS. X-ray film viewing boxes should be included, even if the hospital has made the transition to a film-less working environment, as there may still be a requirement to look at films from other hospitals or old images that have not been digitised. Worktop space close to the MRI control console should be provided for temporary and permanent patient monitoring equipment and instrumentation, so that the radiographer/technologist or visiting clinician can easily observe and monitor the patient.

13.80 The number of persons in the room will be between two and eight persons. Usually, three people, two radiographers/technologists and a radiologist, will be in the control room whilst scanning is being undertaken. Others present may
include additional radiographers/technologists, visiting engineers and physicists, and clinicians, including surgeons and anaesthetists. In a teaching environment, student radiographers/technologists and trainee radiologists may also be present during patient examinations. Chairs and personal workspace for three should be provided.

13.81 The control room should be located directly adjacent to the MRI examination room. The radiographer/technologist should be able to see along the bore of the magnet and the whole of the examination room, when scanning a patient. The use of an RF window to achieve this purpose is discussed above. See paragraph 13.65. There may be some planning and clinical advantages in designing a combined MRI/CT control room as the modalities have some similarities. In this case measures need to be taken to ensure direct viewing is not possible from the MRI room to the CT room and vice versa. The design of the room should allow the radiographer/technologist to have a direct view of the MRI examination room entrance to ensure control of access and prevent unauthorised persons entering the examination room.

13.82 A cross-sectional imaging workstation could be installed in the control room. However, as it may be used for reporting on images, it would be better installed in a directly adjacent office, equipped to reporting room standards. A compact dry laser imager may be required in the control room, if space is limited in other parts of the suite. An outside window is desirable, and should be fitted with a blackout blind to provide light control. Variable illumination will be required to assist with the review of clinical images on workstation monitors, therefore dimmer switches to control the light in both the examination and control rooms are required.

13.83 There will always be a significant machine heat yield in this area. The number of people in the room will add to this. Mechanical ventilation or air-conditioning will therefore be required.

13.84 Care must be taken over controlled area status. Under the MHRA’s Guidelines for magnetic resonance diagnostic equipment in clinical use, 1993, specific access control is required. There are additional requirements if the control room is within an outer-controlled area with more than 3 to 5 gauss present. Safety considerations and special requirements for monitors and display devices to operate without distortion in low magnetic field environments should be considered.

13.85 An emergency MRI electrical isolator push-button should be included in the control room. In some cases, this is incorporated into the design of a MRI console, but project teams should consider the provision of an additional switch. A second protected quench button can be fitted in this room, if this is considered necessary to satisfy local procedures and policies. See paragraph 13.64.

13.86 The Magnetic Resonance Control (MRC) console may be connected to a network for transmission of data and images to other parts of the hospital. In addition, the manufacturer will wish to connect the MRC to a telephone line through an in-built modem, to permit some quality control procedures to be
undertaken remotely. However, this may conflict with NHSS connection rules and a proposed solution to this challenge is described in Appendix 2:
Engineering requirements.

13.87 Small staff lockers with non-ferromagnetic keys for valuables and metallic personal items including magnetic devices such as credit cards should be located in this area for radiographers/technologists and other clinicians who may be working in the examination room.

Siting requirements and control of radiofrequency (RF) radiations

13.88 Most existing MRI suites will be integrated into diagnostic imaging departments. In some instances the MRI suite may form a completely separate entity. With the continuing rapid increase in the demand for MRI scanning services, particularly within oncology and, possibly, orthopaedics departments, it is likely that business cases will increasingly be able to justify a MRI installation that is dedicated to specific services or shared with a restricted range of other healthcare demands.

13.89 The very strong magnetic field used to align the proton spin axis, described in the introduction to this section generates a fringe or waste field which appears in the environment around the scanner. In general, on MDA advice, this field must be constrained to 0.5mT, or 5 gauss, for safety purposes. Some instrumentation, including TV monitors and image intensifiers, will not operate correctly when subjected to magnetic fields as low as 0.01mT or 0.1 gauss. This may influence the siting of MRI units. A list of some of the equipment affected by the stray magnetic fields is shown in Table 13.2. This list is not exhaustive and the susceptibility of equipment to magnetic fields should be checked when installed into spaces adjacent to the MRI examination room.

<table>
<thead>
<tr>
<th>Field intensity (Gauss)</th>
<th>Devices affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Video terminals, videotape, magnetic disks</td>
</tr>
<tr>
<td>10</td>
<td>Computer optical disk drives, X-ray tubes, HVAC equipment, Telephone switching, Credit cards, Watches and clocks</td>
</tr>
<tr>
<td>5</td>
<td>Power conditioner, Winchester disks, Tate storage devices, Cardiac pacemakers, Credit cards</td>
</tr>
<tr>
<td>2.5</td>
<td>CT scanners, TV monitors, Power transformers, Ultrasound equipment, Main electrical distribution transformers</td>
</tr>
<tr>
<td>0.5-1</td>
<td>Radionuclide imaging cameras, Positron Emission Tomography devices, Spectroscopy colour monitors, Cyclotrons, Electron microscopy devices, Linear accelerators, Colour televisions, Radiotherapy simulators, Solid state image intensifiers, Direct X-ray equipment</td>
</tr>
<tr>
<td><0.5</td>
<td>Computed radiography equipment, Conventional caesium iodide image intensifiers</td>
</tr>
</tbody>
</table>

Table 13.2: Example of devices affected by static magnetic fringe fields
13.90 The fringe fields generated by open magnet systems, either cryogenic or non-cryogenic, may be larger than those generated by higher strength whole body magnets. The main reason for this is that the design of the open magnet systems means that they are unable to incorporate active shielding around the whole of the magnetic field.

13.91 If it is necessary to site equipment within fringe magnetic fields that may cause them to malfunction, or if it is not possible to contain the 0.5mT field to within the examination room, then some magnetic shielding may be required. This can be achieved by the use of iron or steel directly incorporated into the structure of the building. In general terms, this will usually relate to between 2mm and 5mm and in the worst cases up to 10mm thicknesses of steel cladding. This will have considerable implications for the overall structural design of the building and should be considered early in the project. The thickness can be varied around the areas of the room and the largest amount of steel can be located in areas where there is most need. This will have the effect of reducing the overall area of the fringe field around the magnet. Consultation with a specialist supplier or recognised expert is advised, as they will be able to assist with the mathematical modelling necessary to determine the amount of steel required around the examination room, including those areas above and below the MRI system. In particular, shielding may need to be provided where MRI units are installed close to gamma cameras, CT scanners, and CR and fluoroscopy equipment.

13.92 The user should consult with the manufacturers of any equipment that will be sited close to the MRI examination room and with the original manufacturer of the MRI scanner. The extent of the fringe fields used to be proportional to the strength of the magnet, but improvements in the design of systems has meant that the fringe fields from 1.5T magnetic field systems are now similar to their 1.0T counterparts. Consideration should be given at project design stage to future-proofing the suite for possible later installation of higher field strength magnets. The design should not be ‘shrink-wrapped’ around a particular type or field strength of magnet. Magnetic fields extend in all directions, particularly above and below the MRI unit, including roof voids which may have to be designated controlled areas.

13.93 A more cost-effective solution than the provision of steel shielding may be possible where there is an outside wall and where it may be possible to provide fences and other measures to curtail access and prevent unauthorised persons entering an outside area where the field may exceed 0.5mT.

13.94 Delivery and installation access for MRI systems may also be a constraint upon their siting. Normally the MRI gantry itself cannot be dismantled for delivery, though it is common for the outer covers to be removed. This will leave an object with approximate dimensions of 2800mm x 3000mm x 3000mm. Clearly such a large object, which will weigh between two and nine tons, will require special consideration in terms of corridor access, access for delivery vehicles and haulage in lifts, particularly if the MRI suite is located other than on the ground floor or in a basement. The use of external cranes is common, but very expensive.
13.95 Magnetic Resonance Imagers are susceptible to the effects of mechanical vibration and the site selected should be well away from sources such as railways, underground lines, and major roads. On some sites this will be a significant problem, necessitating consideration of costly special foundation designs and insulated structures.

13.96 The homogeneity or uniformity of the magnetic field discussed above is seen as being pivotal to good imaging. The performance of the MRI system can be distorted by the proximity of large ferromagnetic or metallic structures. All systems incorporate some form of multi-level shimming, which can be used to correct the distortion caused by some ferromagnetic structures, but this can only work for some objects, depending on their size and proximity to the MRI examination room or the magnet. Table 13.1 shows the minimum distances which should exist between the MRI scanner and ferromagnetic objects to prevent distortions in the uniformity of the magnetic field, caused either by vibrations which the objects cause or the magnetic field generated.

13.97 The list provided is not exhaustive and should be used for general guidance only. A full site survey should be undertaken before a site is chosen to determine the presence of ferromagnetic masses and potential sources of vibration.

13.98 There are many varied types of equipment that can affect the uniformity or correct operation of the MRI system. Consideration of these issues needs to take place at the planning stages. All the equipment manufacturers will be able to provide literature on the types of equipment that can be installed within the proximity of the magnet.

13.99 The siting of MRI suites next to CT scanning facilities to create a cross sectional imaging capability is often seen as posing significant clinical advantages. However, particularly where high field MRIs are employed, great care must be taken to ensure that the accompanying magnetic field will not give rise to difficulties for the CT equipment.

Fire Precautions

13.100 Because of the high magnetic field, fire response personnel must not enter the scan room with oxygen tanks, fire extinguishers or other fire fighting apparatus which is non-MRI compatible. Provision of MRI-compatible fire equipment is necessary. Further guidance is contained in SHTM 83: *Fire safety in healthcare premises – General fire precautions.*
14. Mobile vehicle scanning units to include CT/MRI and PET

Background and information

14.1 A mobile diagnostic imaging unit consists of self-contained scanning and control equipment housed in the trailer of an articulated vehicle. Generally the imaging equipment is installed directly into the trailer and cannot be removed. In a few instances, the vehicle may only be used to transport the imaging modality. In this case, the equipment is transferred to a suitable operational space upon arrival at the hospital.

14.2 A number of diagnostic imaging services can be provided using this method such as lithotripsy, mammography, CT, MRI and, in some cases, fluoroscopy/fluorography units. This section concentrates on the built environment implications for mobile units visiting hospitals. It does not describe the mobile mammography vehicles providing a screening service to the community.

14.3 The provision of a mobile unit may be appropriate in the following circumstances:

- during replacement of diagnostic imaging equipment. The changeover period may not be long enough to justify the creation of a scanner in a temporary installation, so to maintain the service a mobile service may be appropriate;
- if an existing modality is undergoing a major repair or upgrade that may last up to a week or more. The hospital may wish to maintain a service in order to avoid a build up of patient waiting and access times;
- in some instances it may not be justifiable, in business planning terms or expected patient numbers, to provide a full time fixed diagnostic imaging service, such as MRI or CT. Therefore a mobile unit, providing a service one to two days per week, may be appropriate;
- a mobile unit may be used to reduce waiting times for examinations at times of high demand by supplementing a permanently installed modality. This may be particularly true for MRI scanning services.
Figure 14.1 Diagram showing the vehicles used to transport the modalities between hospitals
14.4 When planning a new hospital, it is recommended that provision is made for a mobile unit, even if a wide range of imaging modalities such as CT, MRI and, possibly, PET, are included in the proposals. It is likely that a mobile unit may be required for one of the reasons discussed above.

14.5 The clinical targets for mobile units are the same as for fixed units, except that it may not be possible to undertake interventional procedures or procedures where the patient has to be anaesthetised. An exception may be where purpose-designed enclosed walkways can be installed from the hospital to allow direct access to the mobile vehicle imaging unit.

14.6 The site for parking a mobile unit, including its construction and preparation, is not part of the unit and the preparation costs for these items are the responsibility of the hospital, unless undertaken as part of a PFI, PPP arrangement or similar venture. In some instances, the supplier of the fixed imaging equipment may meet some of the costs when the mobile unit is used to maintain service during a major repair, upgrade or replacement. This will
depend on local arrangements and the overall financial arrangement.

14.7 Planning should include consideration of the pedestrian, patient, technician, and vehicular traffic flow patterns as well as the other considerations outlined below.

Sequence of events

14.8 The normal sequence of events leading to a patient scanning session is as follows:

- the mobile unit is driven to the site and parked at the designated location;
- safety items, traffic barriers etc. are set up;
- power and water are connected to the on-board systems within the vehicle, such as scanning equipment, and final calibration and QA procedures start. During the initial visit, this may take several hours, but for subsequent visits to the same site, the overall process may be much reduced. The designated site for the articulated vehicle should be marked for future visits, as large changes in the scanner’s position may have an effect on the overall set-up parameters and measured fringe fields.

 For MRI scanners this process can take longer as the system has to be filled with cryogen on arrival at the site. The magnetic field may also have to be ramped to its full working status and the magnet may have to be re-shimmed;

- on successful completion of calibration and QA checks the unit is available for patient scanning.

Site specifications

14.9 The following paragraphs describe requirements for a mobile scanning unit site in greater detail.

14.10 A full site survey should be undertaken when introducing a mobile vehicle service to an existing hospital. Factors that should be considered are listed and described below. They should also be considered when planning or building a new hospital.

Size

14.11 The site must be large enough to accommodate the whole of the articulated vehicle and allow the towing section to be detached from the trailer. **Figure 14.1** shows the size of the towing vehicle and trailer.
Access to the site

14.12 The vehicles require clear access to the selected site, with no tight-radius curves, overhead obstacles or narrow alleyways. The roads must be wide enough to accommodate the vehicle. Its overall width dimensions and turning circle are shown in Figures 14.1 and 14.2. The vehicle should not pose a risk to other patients or staff when entering the site. The sensitive nature of the medical electronics also requires that no obstacles, such as curbing, raised walkways, or planters, infringe on the access route. Consideration will also need to be given to the location of any speed restriction devices used on site access roads. The vehicle will need to arrive at least half a day before it begins scanning patients and for some older units this period may be slightly longer. The estates department should ensure that all parking barriers blocking the access of the articulated vehicle to the hospital site are temporarily removed.

14.13 Arrangements may have to be made to ensure that the vehicle has access to the parking site out of core working hours, i.e. between 9 am and 5 pm. It is common for the supplying organisation to deliver the vehicle in the early evening so that they can set up in time for examinations to commence the following day.

14.14 If the mobile service is operated to supplement existing diagnostic services within a hospital, it may remain on site for one to two days per week or two to three days every two weeks. The mobile unit will usually provide a service to a number of hospitals within a region and visit each of these in turn. In the majority of circumstances, the same mobile vehicle will visit the hospital on each occasion. If the mobile unit is being used to provide a service during a breakdown or replacement, it is likely to remain on site until the process has been completed and the installed unit is operational.

14.15 Since mobile MRI units will require refilling with cryogen, access for a much smaller vehicle delivering cryogen to the scanner, may be required. In addition, access arrangements may have to be made for the movement of cryogen through hospital facilities. However, in most cases cryogen refill will not take place on site and these special arrangements will not be required.

Patient access considerations

14.16 The mobile unit will contain only a control area, examination room and, if needed, a technical room. There will be no room for patient support areas, which will need to be provided within the hospital.

14.17 The site selected should, in general, be close to the diagnostic imaging and interventional radiology department and/or an out-patient registration area. Convenient and direct patient access from these areas to the unit should be available, including ramps, elevators and walkways. The access route should avoid, if possible, all non-patient areas of the hospital such as loading docks and storage areas. The provision of a temporary or permanently enclosed walkway between the hospital and the mobile scanner may be appropriate, especially where the mobile service is to be provided intermittently over a long
period of time. If it is considered necessary to move anaesthetised or sedated patients to the scanner, this will become a clinical requirement, and the hospital’s clinical group leader on anaesthetics should be consulted. In such cases, there will be a need to provide a patient preparation area and a recovery area close to the mobile unit in the main hospital building. If an enclosed walkway link is not provided, arrangements must be made for patients, including those who may be in a wheelchair or trolley, to use the external pathway safely all year round in all types of weather conditions.

Wheelchair access to the mobile unit

14.18 To allow passage of wheelchairs and stretchers, the pathway to the mobile unit should have no steps, curbs, or ramps with a slope greater than 1:12. Access to the actual scanner or articulated vehicle for the majority of ambulatory patients will be via a small staircase. The hospital, working with the supplying company, should ensure that a lift is provided at the entrance to the articulated vehicle to assist the access of patients on trolleys or in wheelchairs. Access by bed bound patients will not be possible and transfer to the mobile unit for these patients will be by trolley only. Modern vehicles have in-built hoists capable of lifting trolleys and wheelchairs into the vehicle.

Concrete support specification

14.19 The total weight of a mobile imaging system installed in the articulated vehicle will be of the order of 40,000kg or 40 metric tonnes. This may or may not include the towing vehicle. The designated site will therefore have to be reinforced to take account of this weight and roads leading into the designated site may have to be upgraded.

Turning circles

14.20 The mobile vehicle must be manoeuvred into position when it reaches its designated site. Movement will be determined by the overall turning circle of the trailer. Road and site layout should take account of this limitation. A typical turning circle is illustrated in Figure 14.2.

Vibration challenges

14.21 The performance of the majority of diagnostic imaging equipment is susceptible to mechanical vibrations. The trailer of the vehicle should not therefore be sited in areas where it may be susceptible to vibration from nearby moving vehicles. Tolerances should be checked with the original equipment manufacturer of the diagnostic imaging equipment and the suppliers of the articulated vehicle.

Service supply pod

14.22 Electricity, water, drainage, data and communication services for the mobile vehicle system must be provided by the hospital infrastructure, as it is unlikely that the mobile unit will be able to operate without them. A services pod should
be provided and located in relation to the hospital building and the mobile vehicle. The vehicle providers will wish to connect directly to the services pod. The type of connections required, service trunking and hospital supply points will need to be ascertained at an early planning stage. The services pod should be designed to be weather-proof and incorporate a lockable cover to prevent unauthorised access. All service supplies to the mobile vehicle should be terminated in waterproof adaptors. The services required by the mobile vehicle units are described below.

Service requirements

Electrical and earthing strategies

14.23 The electrical supply requirements for diagnostic imaging modalities installed in mobile articulated vehicles will be similar to those required for fixed or stationary modalities in a department. The mobile systems may require up to 30A and 480V per phase at 50 Hz in a WYE configuration with neutral and ground connections. Power supply requirements may have to be made for additional sockets in the mobile vehicle.

14.24 The mobile units will almost certainly have an earth reference terminal, which will need to be connected to the central protective earth of the hospital.

14.25 In all respects, the configuration should comply with the 16th Edition of IEE wiring regulations, which are embodied in BS 7671:2001. Engineering tests advised for electrical supplies and earths to fixed units should also be carried out for mobile vehicle systems. Appendix 2: Engineering requirements contains further details.

14.26 All service supplies, particularly electrical connections to the mobile vehicle, must be terminated in high quality weatherproof and resistant adaptors. All services to the mobile vehicle should be placed under or behind a locked cover to prevent unauthorised access.

14.27 In addition, electrical supplies will need to be provided for heating, lighting and ventilation of peripheral monitoring equipment. This should be kept separate from those provided for the imaging equipment. However, all equipment should be earthed through the common earth reference terminal.

Data and film communication links

14.28 In most cases, radiographers/technologists will wish to acquire and send data to and from the hospital information or patient administration system. These networks may, in turn, be linked with a RIS. To facilitate this requirement, low speed data communication links will be required between the mobile service vehicle and the hospital. Appropriate firewalls and security mechanisms may have to be put in place to stop employees of the mobile vehicle provider accidentally accessing confidential data.
14.29 Images acquired from the mobile scanning equipment will usually be reported or reviewed by clinicians working in the hospital. The following options exist:

- the images may be dry laser printed using equipment located in the control area of the articulated vehicle. Arrangements should be made to ensure that films reach a radiologist and/or referring clinician. A small sorting/collating area may need to be designated in the reception area associated with the mobile vehicle unit;

- if the hospital infrastructure permits, images may be transferred digitally to the radiology department and stored on a central or local archive. A high-speed data link with the hospital network, possibly with additional routers, may be required to facilitate this operational requirement.

Telephones

14.30 The hospital must supply telephone services to the mobile imaging services vehicle whilst it is sited on hospital grounds. Usually, a modular phone jack should be supplied. A compatible receptacle should be located near the power receptacle and within 7.6m of the unit’s telephone receptacle. The connecting telephone cable is provided as a part of the mobile unit. Additional connections within the hospital telephone system may be needed.

14.31 Maintenance of the scanner may be undertaken by the original equipment manufacturer who may request the provision of an additional phone connection to provide remote diagnostic services as described in *Appendix 2: Engineering requirements*.

Water and drainage

14.32 General water and drainage services may be needed for hand-washing facilities within the mobile vehicle unit.

14.33 Some mobile vehicles may contain a rehumidification system, which uses water to maintain specified environmental requirements. Although the system has a storage tank, a water supply should be available at each site for this purpose. System filling should be made available within reasonable distance of the unit site. The exact requirements should be discussed with the supplier of the mobile vehicle equipment.

Special consideration for MRI scanners

Chilled water supply

14.34 The hospital must provide a chilled water supply. This is used by the gradient coils and the compressor or chiller unit which recycles the liquid helium.
Medical emergencies

14.35 Local rules will prohibit resuscitation equipment containing ferromagnetic materials being taken into the examination room, as there is a distinct possibility that they may become dangerous projectiles. In addition, standard non-MRI-compatible patient monitoring and/or emergency equipment such as ECGs, intravenous pumps, and defibrillators will not function properly in the magnetic field of the scan room. A patient experiencing distress may be removed from the scan room on a non-ferrous trolley (provided with the mobile unit) and attempts to resuscitate the patient will usually be undertaken in the control room. A protocol for resuscitation of patients following cardiac or respiratory arrest, for example, must be established. The resuscitation equipment will usually be stored within the control area. Part of the electrical supply to the articulated vehicle should, therefore, be constantly maintained even during power failures.

Fire precautions

14.36 Because of the high magnetic field, fire response personnel must not enter the scan room with oxygen tanks, fire extinguishers or other fire fighting apparatus which is non-MRI-compatible. Provision of MRI-compatible fire equipment is necessary. Further guidance is contained in SHTM 83: Fire safety in healthcare premises – General fire precautions.

Maintenance and housekeeping

14.37 Because the magnetic field also has the potential to attract smaller ferrous items such as buckets, floor polishers, hand tools and tool kits, caution should be exercised by all maintenance and cleaning personnel entering the scan room.

Cryogen transfers

14.38 Consideration will need to be given to the method of cryogen transfer to the MRI unit. This may take the form of a small van being parked alongside the trailer and then transferring Dewars of liquid helium to the articulated trailer using the integrated lift. Alternatively, arrangements may have to be made for Dewars of liquid helium to be transferred through the hospital, usually outside core working hours. However, as noted in paragraph 14.15, in most cases cryogen refill will not take place on site and these special arrangements will not be required.

Cryogen venting

14.39 The unit will include venting provision for the super conductive magnet. The liquid helium evaporates at a slow rate from the magnet at all times. The escaping helium gas is vented directly from the magnet to the exterior of the van. The ports of these vents are usually located high on the curb side (passenger side) exterior wall beside the magnet. The exhaust ports must not be obstructed at any time. The position of the exhaust vent with respect to the outside environment is critical and should not be located close to public, patient
or staff areas, or placed where helium gas could enter hospital buildings. If the unit quenches accidentally or otherwise, large amounts of liquid helium may escape and displace the oxygen in surrounding 'still' areas.

Magnetic fields

14.40 The quality of the images obtained from MRI is directly dependent upon maintaining a constant homogeneous magnetic field within the system. The site must therefore be free of large ferrous objects and the scanner should not be located close to generators or buildings. The distances recommended in Table 13.1 should be observed. The side of the unit should be sited at least 2m away from the nearest building structure.

14.41 The fringe field generated by the magnet should not interfere with pacemakers or any other medical devices that may be present in the nearby hospital building. On the first visit to the site, following cryogen refilling and attainment of full magnetic field, a fringe field survey should be conducted to determine the extent of the fringe fields around the vehicle. In the majority of cases the 5 gauss field will be contained within the examination room inside the vehicle. In some cases, particularly with older scanners, this may not be possible and barriers should then be positioned around the vehicle to control unauthorised access. This is a concern for patients who have pacemakers fitted. Planners should try to ensure that the vehicle is not placed near any equipment that may be sensitive to fringe magnetic fields generated by the magnet. Equipment that is particularly sensitive to fringe magnetic fields includes modalities incorporating image intensifiers, gamma cameras and CR systems.

Special considerations for mobile vehicle X-ray, CT and PET scanners

Radiation protection

14.42 X-ray units provided in mobile vehicle units have to meet the same standards, in terms of clinical imaging performance and staff, patient and public safety, as those provided in fixed sites. The design of the trailer should incorporate some form of radiation shielding to contain the controlled radiation area within the examination room of the trailer. Some older units may not be able to meet the new requirements of the Ionising Radiations Regulations 1999. These have much stricter limits than earlier regulations on radiation exposure to the public from man-made sources of radiation. To combat this problem, additional physical barriers may need to be set up around the articulated trailer to prevent members of the public and staff from moving too close to the trailer whilst it is being used. In some cases, once the articulated trailers have been sited, the clinical procedure or operational space will be increased, thus preventing the need for additional physical barriers. Advice regarding the measures that should be taken should be obtained from the RPAs.
Cardiac angiography

14.43 For cardiac angiography or other interventional procedures undertaken in a mobile vehicle, a temporary or permanent covered walkway must be provided between the day ward or recovery preparation area in the hospital and the mobile. Often, seriously ill patients or those still recovering from the effects of sedation or anaesthesia will need to be transferred to and from the mobile vehicle. When designing the walkway and its connections with the hospital and the mobile vehicle, advice should be sought from the clinical lead on anaesthesia.
15. Ancillary patient accommodation

Reception areas

15.1 The reception and waiting areas provide patients and carers with the first contact with the facility. It is very important to design a reception that warmly greets all those who enter, provoking a feeling of support and reassurance, balanced with a sense of efficiency.

15.2 A well-designed reception, with friendly staff and well-managed appointments, will help to reduce stress to both patients and staff. The benefits of good interior and environmental design have been well researched and documented.

15.3 The central reception/appointments area is the focal point of the imaging services department and should be designed to serve the whole department. Consideration should be given to the provision of separate sub-reception areas for specific individual modalities, in particular cross-sectional imaging and nuclear medicine. Special care should be taken to ensure that access to all reception/waiting areas is carefully designed for all patient groups, including people with disabilities. The patient’s initial experience must reflect the focus on patient care. Patients should report their arrival to the central reception, as it is desirable for patients’ records to be centrally managed. Their identity and attendance details are recorded here, so that information on the next stage of the patient’s care can be confirmed.

15.4 The counter for registration and appointment procedures should have a separate section with auditory privacy to allow confidential discussions. The counter should be of split level design to accommodate the appropriate RIS terminals to schedule and confirm attendance of patients. The design of the counter should take into account security, disabled access and the age of the patients attending for the majority of the procedures.

15.5 Staff working in the main reception area will need to have a good view of the main waiting area in the department. The use of CCTV may be appropriate for security reasons.

15.6 Temporary storage of X-ray films may be needed within the reception area, but the requirement will reduce with the increased integration of digital imaging.

15.7 If subsidiary reception points are provided, computer linking is essential. This should be achieved by the use of the RIS. A workstation for a senior radiographer/technologist should also be provided in this area, for workflow pattern control, technical enquiries and general supervision.

Patient journeys

15.8 Refer to the text under individual modalities.
Waiting areas

15.9 The main waiting space for all patients and their companions should be easily accessible from the entrance to the department and controlled by and overseen from the central reception area. It should have a comfortable and relaxing environment with domestic type finishes and fittings. Natural light should be provided where possible and mechanical ventilation may be required. If there is excessive build-up of heat in the main waiting area, comfort cooling or, preferably, air conditioning should be considered. Patients who have received an administration of a radioactive substance for unsealed source imaging should be asked to wait in the appropriate sub-waiting area.

15.10 Where a relatively high proportion of children attend, play areas should be allocated within the main waiting area. Separate facilities should be provided for younger children and teenagers or adolescents. Local circumstances may dictate that segregation of patients is appropriate.

15.11 A separate waiting area should be provided for patients on beds or trolleys. In this area space will be required for nurses or others attending the patient. Space should also be allowed for additional equipment attached to trolleys. The area may be a recess off the relevant circulation space and should be observable from the reception point. Curtains should be provided for privacy when required.

15.12 Sub-waiting spaces, convenient to the diagnostic rooms, should be provided for patients awaiting examinations or subsequent checks. The requirements for sub-waiting areas are different for each modality and are described within each modality section.

15.13 Access outside normal working hours must be available for patients attending the department from A&E. There may be a need to accommodate patients on trolleys during those times. This will depend on the provision of A&E diagnostic imaging facilities, which may be located outside the main department.

People with disabilities

15.14 An accessible environment must be provided for people with disabilities. These include wheelchair users, those who have difficulty in walking and those with sensory handicaps, such as visual or hearing impairment. Refer to the Disability Discrimination Act 1995 for further information, together with NHSScotland disability access information.

Separate male and female changing areas – changing cubicles

15.15 Cubicles should be planned in groups and associated with sub-waiting areas. They should provide facilities for patients to dress and undress in privacy and for secure storage of clothing during their examination. Separate administrative arrangements should be made for the secure storage of valuables. Cubicles should have some means of identification, such as numbering or colour-coding, both inside and out. At least one of the cubicles in each group should be
suitable for use by wheelchair patients or those who require assistance. For special considerations see sections for individual modalities.

15.16 Mirrors and shelves should be fixed at heights suitable for both wheelchair and standing users. Shelves should be placed near mirrors.

Counselling and private consultation rooms

15.17 Counselling and psychological care will be required during some stages of the care and diagnostic process. There is a growing need for facilities that allow private discussion with patients. This may be of particular importance in the care of patients undergoing treatment for cardiological disease or cancer.

15.18 Where identified in the sections on individual modalities, dedicated accommodation should be provided for patient counselling. The accommodation should reflect the informal comfortable, sympathetic environment needed to deal with seriously ill or distressed patients or visitors, and care should be taken with the quality of finishes, colour and lighting. Overall, the room should be comfortable, domestically furnished and incorporate acoustic shielding, so that conversations with the counsellor or clinician cannot be overheard in adjacent areas. The room should incorporate some rudimentary refreshment facilities, be large enough to seat a maximum of four people comfortably, a nurse, clinician, patient and relative for example, and positioned appropriately either close to the modality or within the imaging services department, possibly next to the ultrasound suite.

15.19 There should be a discreet exit from the consultation room so that patients who have received bad news do not have to pass through the main waiting area.

Patient entertainment and refreshment facilities

15.20 In the main and sub-waiting areas, consideration should be given to the provision of chilled water, together with a supply of paper cups, free of charge to patients and visitors. A separate bin should be provided for the used cups so that they can be collected for recycling.

15.21 In large diagnostic facilities, such as those provided in some district general and tertiary hospitals, where there is a large throughput of patients, space may be allocated for a small coffee shop, such as those provided by Friends and charitable organisations.

15.22 Waiting areas for patients should contain magazines and, possibly, a wall-mounted television. This could be a stand-alone device, or be connected to the hospital’s own internal television system provided to in-patients.

15.23 Warning notices will be required at all refreshment facility areas, advising patients not to eat or drink before checking if they are fasting.
16. Staff and special activity accommodation

Office accommodation

16.1 An office with standard facilities is required (see Health Building Note 18: Office accommodation in health buildings) to suit the staffing requirements for each department. Local teams will assess the numbers and type.

16.2 In general terms, the office and general accommodation of a diagnostic imaging department does not differ greatly from that of other hospital-based facilities of comparable size. However, a number of points requiring special care do arise and these include:

- offices used for sensitive discussions with seriously ill patients and their relatives require careful siting. There is a need for discretion in terms of sound control, use of induction loop hearing aids and of access/departure;
- to assist in advancing patient services, most departments are engaged in a range of clinical trials working with other clinical specialties. There may be special office needs in accommodating staff to carry out record keeping and data analysis;
- the National Cancer Registry is an intrinsic part of the drive towards better cancer outcomes and, like the clinical trials, endeavours may give rise to the need for temporary or permanent accommodation of a high level clerical team;
- the introduction of new technologies which better combine and handle patient treatment data, particularly in diagnostic imaging, has given rise to the need for data entry and review facilities for use by radiographers/technologists and other key staff. These may be accommodated in an open plan office suite;
- office accommodation for those responsible for psychological and social care of the patient and families may be required. This must include open access rooms for patient information services.

Superintendent/Senior radiographer/technologist accommodation

16.3 Dedicated offices for superintendents and shared offices for senior radiographers/technologists should be provided.

16.4 In any radiology facility, there will be at least one superintendent or, in some cases, senior radiographer/technologist with administrative and departmental responsibilities. Each will require office accommodation. Functional requirements will dictate the best location for these offices. They will be used for viewing of and reporting on diagnostic images, appraisals, consultations, and discussions with colleagues and other personnel.
16.5 This office, or offices, should be provided with dimmable lighting. Storage space will be needed for the records on administration, maintenance, radiation protection as well as space for books, periodicals and images of special interest and education. In addition to conventional illuminators, electronic image viewers may be required. The administrative work, including staff records and that of radiation protection, will require a RIS terminal with easy access to a printer. The confidential nature of some of the printouts requires the printer to be in this room. An additional multi-monitor workstation may be required for reporting purposes.

16.6 As mentioned above, the offices may be used to conduct staff appraisals or discuss other sensitive issues. If these rooms are to be placed near waiting areas, processing areas or other occupied rooms, then they must be given adequate acoustic shielding.

Education facilities

16.7 Advances in the approach to diagnostic imaging and interventional radiology, and the need for continuing professional development, have placed an increasing emphasis on education facilities. The pace of technological and clinical development in radiological techniques is extremely fast.

16.8 The clear need for an educational seminar or lecture room with modern audio/visual facilities and access to good computer systems is now well established. This should be located close to the patient care areas to promote effective use.

16.9 Library facilities and internet access points are key to modern radiology services. It is essential to consider the provision of private study space, to make effective use of publications.

16.10 Many diagnostic imaging departments have specialist staff training facilities for the basic and postgraduate education of staff members such as radiographers/technologists and physiotherapists. Design details are beyond the scope of this guidance. Where there is an integrated Teaching and Education Centre the requirement for educational facilities within the diagnostic imaging department may be minimal.

Staff location system

16.11 The staff location system employed in the hospital should be extended to give adequate cover to this department.
Telephones and intercom systems

Telephones

16.12 Central telephone facilities for internal and external calls should be provided. Telephones should be fitted with an indicating call-light and a bell or buzzer of subdued tone in recovery areas or areas adjacent to them and in any diagnostic imaging control rooms in which a telephone is provided. Additional lines may need to be provided for remote diagnostic access of computer workstations and consoles.

16.13 In some diagnostic rooms, particularly those used for interventional work, it may be inappropriate to install a telephone, as this may distract the clinician when conducting difficult procedures. In these instances, a staff call and or cardiac/respiratory arrest alert system should be provided.

16.14 Guidance concerning the provision of telephone systems and equipment, including telephone internal cabling distribution and telephone handsets, is given in Health Building Note 48: Telephone services.

Intercom systems

16.15 A telephone system served by electronic exchange equipment should meet virtually all the internal communication requirements in this accommodation. However, due to the character and nature of some of the facilities, it is usual to provide intercom stations controlled from the departmental reception point. This will permit ‘hands-free’ speech contact between the receptionist and diagnostic staff in these rooms. These stations should be of the ‘duplex’ type, with microphone and loudspeaker combined in a telephone-type instrument, with automatic voice switching and automatic conversion to ‘telephone mode’ for privacy. The system should provide a minimum of two speech channels and incorporate all call paging.

16.16 In those situations where certain imaging rooms are associated with accident and emergency facilities, it may be appropriate to install an extension from the departmental intercom system.

Clocks

16.17 Clocks should be battery operated and located where they can be clearly viewed by numbers of staff/patients/visitors.
Auxiliary areas for clean and dirty utility, trolley lay-up and associated nursing functions

Dirty utility

16.18 There should be space for the temporary holding of materials for disposal and reprocessing, such as soiled linen for the laundry and any items for central cleaning.

16.19 Special consideration should be given to the provision of a slop hopper with adequate drainage, to avoid clogging by barium. Special drainage must be provided for the disposal of barium. A bedpan washer unit or macerator, depending on hospital policy, will also be required.

16.20 These facilities should, if possible, be accessible from within the department and also close to the hospital street. Collections, except for sharps containers, which are held in the dirty utility room for security reasons, may then be made without portering staff needing to enter the main circulation space of the department.

16.21 Bagged refuse, used linen, and possibly sterile supply service items for reprocessing are held for collection. The disposal hold should be subdivided so that each category may be held separately, thus lessening the risk that recyclable items are sent for incineration.

16.22 The size of the disposal hold should be determined by the ratio of the rate of accumulation of material for disposal, to the frequency of collection.

16.23 Consideration should be given to the method of disposal of catheters and stents used in interventional radiology procedures.

Linen store

16.24 Storage for the day-to-day working stock of linen will be required. Its size and function will be in accordance with the whole hospital policy.

Cleaners’ room

16.25 A cleaners’ room to service the department should be provided.

Secure storage areas

16.26 Secure storage should be provided to house small items of equipment used intermittently, for example instrument trolleys. Space will also be required for bulk storage of forms, stationery and small miscellaneous items. Storage for wheelchairs and patient trolleys will be a matter for local decision. Where there are specialist requirements, this is highlighted in sections on individual modalities.
Clean utility

16.27 Clean utility room(s) should be provided for the storage and assembly of clinical requisites used in the imaging and interventional rooms. These may include sterile supply items, pharmacy supplies including drugs, controlled drugs, contrast media, and other non-sterile clinical supplies. Certain pharmaceuticals used during barium examinations may also be stored and prepared in this area. Space will be required for trolleys to be 'laid up' for all special examinations. Out-of-hours access to controlled drugs may have to be arranged.

Patient call systems

16.28 Switching should be provided to transfer, indication of an emergency call outside normal working hours to the accident and emergency department or to an appropriate centrally manned point.

Staff emergency call systems

16.29 Staff/staff emergency call points should be provided in all patient toilets, changing rooms, recovery rooms, imaging control and examination rooms and waiting areas

Staff rest rooms

16.30 A staff room will be required for general use by all staff of the department. Ideally, it should be sited near to diagnostic imaging rooms, particularly those used outside normal working hours. It is desirable that the room should have natural lighting and ventilation, and a pleasant environment. Facilities for beverage making and preparation of snacks are required.

Staff changing rooms including surgical scrub, shower and WC facilities

16.31 Separate changing rooms should be provided for male and female radiographers/technologists. All should have full height lockers for the storage of personal clothing, uniforms and personal items. Special facilities are required for those departments undertaking interventional work.

On-call/night duty radiography facilities

16.32 Dedicated provision should be made for on-call clinical staff. This should comprise a bed/sitting room with tea and coffee making facilities, TV and music facilities, internal telephone, intercom and computer terminal for private study. An en-suite shower room should also be provided. Local circumstances will dictate the number of these suites required.
Porters’ base

16.33 Accommodation for porters should be provided near the entrance to the department and overseen from reception.
17. Appendices

Appendix 1: Example plans

Appendix 2: Specific engineering requirements

Appendix 3: Glossary of terms, abbreviations and further information on clinical techniques
Appendix 1: Example plans

PLAN 1: General X-ray processing, room relationships
PLAN 2: General X-ray / changing / processing, room relationships
PLAN 3: Processing and viewing area (1), arrangement for smaller DGH
PLAN 4: Processing and viewing area (2), arrangement for larger DGH using CR, possibly with PACS
PLAN 5: Computed radiography, key to PLAN 4
PLAN 6: Relationship between diagnostic imaging and patient waiting / changing facilities
PLAN 7: Conventional or remote fluoroscopy room, construction for radiation protection
PLAN 8: Conventional or remote fluoroscopy room, movement and observation
PLAN 9: Fluoroscopy room, key to equipment
PLAN 10: Fluoroscopy room, generic section, radiation protection
PLAN 11: Fluoroscopy room, generic section, equipment
PLAN 12: Fluoroscopy room, generic section, environmental services
PLAN 13: Angiography / occasional vascular intervention, room relationships
PLAN 14: Angiography / vascular intervention, twin room suite
PLAN 15: Major vascular interventional procedures suite, movement diagram
PLAN 16: Major vascular interventional procedures suite, access and movement, radiation protection
PLAN 17: Interventional radiology, key to equipment
PLAN 18: Single gamma camera room incorporating injection area (1), radiation protection
PLAN 19: Single gamma camera room incorporating injection area (2), movement and observation
PLAN 20: Single gamma camera room incorporating injection area (3), key to equipment
PLAN 21: Gamma camera room with injection area elsewhere in suite, radiation protection
PLAN 22: Gamma camera room with injection area elsewhere in suite, equipment
PLAN 23: Gamma camera room with injection area elsewhere in suite, movement and observation
PLAN 24: PET scanner suite, radiation protection
PLAN 25: PET scanner suite, access and movement, clinical equipment
PLAN 26: PET scanner suite, key to equipment
PLAN 27: Symptomatic mammography, single imaging room
PLAN 28: Dental x-ray room
PLAN 29: Multi-cubicle ultrasound suite
PLAN 30: Single ultrasound room planned/equipped for routine examinations and minor interventional procedures
PLAN 31: Interventional ultrasound
PLAN 32: MR / CT Scanner suite
PLAN 33: ‘Back to back’ combined CT / MR Scanner suite, indicative sections, radiation protection
PLAN 34: ‘Back to back’ combined CT / MR Scanner suite, indicative sections, equipment, services distribution
PLAN 35: CT Suite with shared scanner rooms, control, etc.
PLAN 36: MR Scanner, extent of magnetic field
PLAN 37: MR Scanner and control room, movement and observation
PLAN 38: MR Scanner and control room, clinical equipment and fittings
PLAN 39: Layout of typical diagnostic imaging department
Patient Circulation Area

1/2. Check patient, set up and take X-ray
3. Take exposed cassette to automatic processor
4. View / check processed films
5. Return with new cassette for next examination
6. Radiologists report clinically on films
7. Films / reports to circulation / filing

Staff Circulation Area

A. Access for bed / trolley - bound patients including preferably separate access route for inpatients
B. Access via en-suite changing cubicles. (See also larger scale plan - PLAN 2)

Legend

- Indicative Key Dimensions
- Scale: All sizes in mm
- Staff movements
- Observation
- Patient movements
- Alternative patient movements

Plan 1

**General X-ray / Processing
Room relationships**

Notes:

- 1350

Scale:

0 1 2 3 4 5 6 7 8 9 10m

Version 1.0: March 2004

© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

0 1 2 3 4 5m

Scale

1350

Frequent staff movement between x-ray room and adjacent film processing and viewing area. (Note that this movement arises for both conventional x-ray film, cassettes, and for CR (Computed Radiography) cassettes; i.e. also in a PACS environment.

A. En-suite changing cubicle; patients change and leave clothing / personal belongings in the secure cubicle whilst the x-ray examination is carried out.

B. Larger cubicle allowing disabled persons changing or, alternatively, provision of en-suite WC if required.

* Access to x-ray room under staff control.
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 3

Indicative arrangement for smaller DGH using automatic daylight film processors.

Legend

- T: Power / Data wall trunking
- RIS: Terminal for patient Data etc.
- LP: Dry laser printer serving (eg) Fluoroscopy
- ADFP: Automatic daylight film processor
- CM: Chemicals mixer serving ADFP
- (Note: de-ionised water points adjacent)
- CS: Vertical dividers under wt for cassettes
- WT: Worktop with storage units under
- XRV: Wall-mounted x-ray viewers for film checking
- RS: Sink for occasional cleaning of ADFP rollers

Circulation Space

Darkroom

Darkroom to give access to min. one ADFP for processing of non-standard film sizes and also to provide facility for dental film developer, film copying etc.

Processing and Viewing Area

Frequent transfer of films / records to reporting, filing etc.

General X-ray Room

Frequent movement of radiographers between x-ray room and process / view.

Legend

- LP Dry laser printer serving (eg) Fluoroscopy
- CM Chemicals mixer serving ADFP
- ADFP Automatic daylight film processor
- RIS Terminal for patient Data etc.
- T Power / Data wall trunking

All sizes in mm

Version 1.0: March 2004

© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

LEGEND

1. Frequent movement of radiographers between X-ray rooms and Process/View
2. Except where PACS in place frequent transfer of films/records
to reporting, filing etc.
3. See also key to equipment (PLAN 5)

PLAN 4

PROCESSING AND VIEWING AREA (2). Indicative arrangement
for larger DGH using computed radiography (CR), possibly with ‘PACS’
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

1350

Scale

0 1 2 3 4m

Staff movements

Observation

Patient movements

Alternative patient movements

All sizes in mm

PLAN 5

COMPUTED RADIOGRAPHY (C.R.)

Key to equipment in PLAN 4
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 6

RELATIONSHIP BETWEEN DIAGNOSTIC IMAGING AND PATIENT WAITING
/ CHANGING FACILITIES : Alternative models.
Observation

Alternative patient movements

Notes:

1. Indicative Key Dimensions
2. All sizes in mm

LEGEND

1. Controlled access from patient areas, with warning lights and lead-lined door construction.
2. Access to en-suite patients areas controlled by staff.
3. Open access to control area permissible, from staff-only areas beyond.
4. Lead-glass screen shielding control area.
5. Indicative lead equivalent 2.5mm @ 150kv.

PLAN 7

CONVENTIONAL OR REMOTE FLUOROSCOPY ROOM
Construction for radiation protection
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

LEGEND

1. Radiographers and other clinical staff only.
2. Patient movement, including bed trolley transfer (double doors).
3. Possible patient movement, to/from en-suite WC.
4. Space required for patient transfer from trolley or bed.

NOTE:

In 'conventional' Fluoroscopy procedures radiography staff will typically be in the examination room during x-ray imaging. In 'remote' Fluoroscopy staff will typically be in the control area. This distinction is determined by the particular x-ray equipment installed, and will affect the size of control area needed.

PLAN 8

CONVENTIONAL OR REMOTE FLUOROSCOPY ROOM

Movement and observation
Observation
Alternative patient movements

Notes:
Indicative Key Dimensions

1350
Indicative Key Dimensions

0 1 2 3 4 5m
Scale

Staff movements Observation
Patient movements Alternative patient movements

FLUOROSCOPY ROOM
Key to diagnostic imaging equipment

PLAN 9

Free standing equipment cabinets for transformer, x-ray generator, controls etc.

Indicative range of movement of x-ray tube mounted on ceiling track system.

Adjustable x-ray tube with floor mounted fluoroscopy 'U-arm' x-ray tube "Explorator" over.

X-ray controls and monitor, behind lead-glass screen.

Trolley mounted image monitor. (alternatively, image monitors may be ceiling suspended and mobile on a ceiling track system).

Chest stand (non-bucky type) is commonly installed in rooms generally used for fluoroscopy procedures. Controls are integral with chest stand.

Emergency stop controls.
1. Room wall construction in dense masonry, Barytes block / plaster, or lead laminate lining panels, to give indicative lead equivalent @ 150 kv.

2. Lead glass / opaque screen shielding control area : minimum 2.1m high and 2.5mm lead equivalent @ 150 kv.

3. Ensure construction for radiation protection, at all floors and ceilings bounding occupied or access areas.

Notes:
- 1350 Indicative Key Dimensions
- Scale 0 1 2 3 4 5m
- Staff movements
- Patient movements
- Observation
- Alternative patient movements

All sizes in mm

LEGEND

PLAN 10

FLUOROSCOPY ROOM : GENERIC SECTION
Radiation protection
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

<table>
<thead>
<tr>
<th>Scale</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>1350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLAN 11

FLUOROSCOPY ROOM : GENERIC SECTION

Diagnostic imaging equipment
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

1. Power, control and image data cable distribution between control area, x-ray table, fluoroscopy u-tube and cabinets: minimum 75mm trunking within floor screed.

2. Vertical cable distribution in wall fixed surface trunking or concealed within hollow partition.

3. Cable distribution, above demountable ceiling, to ceiling suspended x-ray tube. (Note possible limited service void dictated by 3100mm ceiling height).

4. Major ventilation ductwork accommodated within deeper ceiling voids in adjacent areas.

5. Perimeter ventilation grilles combined with indirect lighting: laid out to avoid range of movement of ceiling mounted x-ray tube.

Legend

1 Power, control and image data cable distribution between control area, x-ray table, fluoroscopy u-tube and cabinets: minimum 75mm trunking within floor screed.

2 Vertical cable distribution in wall fixed surface trunking or concealed within hollow partition.

3 Cable distribution, above demountable ceiling, to ceiling suspended x-ray tube. (Note possible limited service void dictated by 3100mm ceiling height).

4 Major ventilation ductwork accommodated within deeper ceiling voids in adjacent areas.

5 Perimeter ventilation grilles combined with indirect lighting: laid out to avoid range of movement of ceiling mounted x-ray tube.

Notes:

1350 Indicative Key Dimensions

0 1 2 3 4 5m Scale

Staff movements Observation

Patient movements Alternative patient movements

All sizes in mm

PLAN 12

FLUOROSCOPY ROOM: GENERIC SECTION

Environmental services and cable distribution
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 13

ANGIOGRAPHY / OCCASIONAL VASCULAR INTERVENTION

District General Hospital context : Indicative room relationships
PLAN 14

ANGIOGRAPHY / VASCULAR INTERVENTION
Indicative room relationships for twin room suite

Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

1350

0 1 2 3 4 5 6 7 8 9 10m

Scale

Staff movements

Patient movements

All sizes in mm

NORMAN RAITT ARCHITECT

Version 1.0: March 2004
© NHSScotland Property and Environment Forum
Notes:

- 1350 Indicative Key Dimensions

Scale

- Staff movements
- Observation
- Patient movements
- Alternative patient movements

All sizes in mm

PLAN 15

MAJOR VASCULAR INTERVENTIONAL PROCEDURES SUITE

Movement diagram
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 16

MAJOR VASCULAR INTERVENTIONAL PROCEDURES SUITE

Access and movement / Design for radiation protection

Legend

See PLAN 17 for key to clinical equipment / fittings.

<table>
<thead>
<tr>
<th>Notes:</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1350</td>
<td>0 1 2 3 4 5m</td>
</tr>
</tbody>
</table>

Indicative Key Dimensions

- Staff movements
- Observation
- Patient movements
- Alternative patient movements

All sizes in mm

NORMAN RAITT ARCHITECTS

Version 1.0: March 2004

© NHSScotland Property and Environment Forum
LEGEND to PLAN 16 clinical equipment / fittings

Bank of 4-6 image monitors, adjustable / mobile and suspended from mobile gantry.

Mobile ceiling gantry suspended from fixed primary ceiling track and carrying image monitors.

Mobile / adjustable ceiling suspended C-arm incorporating X-ray tube and opposed image intensifier:
Indicative range of rotational movement

Floor fixed patient table.

Fixed primary ceiling track supporting mobile ceiling suspended C-arm.

Floor / table mounted C-arm.

CMW Contrast medium warmer
(on worktop)

PI Contrast medium power injector
(mobile and with remote control)

CM Patient lifesigns monitor
(mobile)

MT Image monitor / computer
(on mobile desking)

MCR Mobile racking for catheters etc.

A Anaesthetic machine

P Fixed ceiling pendant for medical gas / power

CP Room vent control panel

AH Lead apron etc. hooks

XRV x 4 Wall mounted X-ray viewers

Notes:

Indicative Key Dimensions

0 1 2 3 4 5m

Scale

Staff movements

Observation

Patient movements

Alternative patient movements

All sizes in mm

PLAN 17

INTERVENTIONAL RADIOGRAPHY

Key to clinical equipment / fittings
LEGEND

1. Patient is a radioactive source, following administration of radiopharmaceutical.
2. Surfaces to be impervious and allow disposal of radioactive spillage.
3. Injection area to be designated controlled access.
4. Adjacent area for storage, preparation and disposal of radiopharmaceuticals requires controlled ventilation and shielded construction.
5. Mobile lead-glass screen between patient and staff positions.

Notes:

1350
Indicative Key Dimensions

Staff movements
Observation
Patient movements
Alternative patient movements

All sizes in mm

PLAN 18
SINGLE GAMMA CAMERA ROOM INCORPORATING INJECTION AREA (1)
Construction for radiation protection
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

LEGEND

1/2. Patients may be observed both from the Injection Area and from within the Examination Room. (Radiologist may remain within the Examination Room during the procedure).

3. Patient movement, including bed trolley transfer (double doors).

4. Transfer hatch for radio pharmaceuticals.

PLAN 19
SINGLE GAMMA CAMERA ROOM INCORPORATING INJECTION AREA (2)
Movement and observation
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 20
SINGLE GAMMA CAMERA ROOM INCORPORATING INJECTION AREA (3)
Key to equipment layout
Observation

Alternatives patient movements

Notes:

Indicative Key Dimensions

PLAN 21

GAMMA CAMERA ROOM WITH INJECTION AREA ELSEWHERE IN SUITE

Construction for radiation protection

LEGEND

1. Patient is a radioactive source following administration of radiopharmaceutical.
2. Surfaces to be impervious and allow disposal of radioactive spillage.
3. Mobile lead-glass or other screen between patient and staff positions.
4. Local extract for exhaled radiopharmaceutical aerosols used in certain diagnostic imaging procedures.
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 22

GAMMA CAMERA ROOM WITH INJECTION AREA ELSEWHERE IN SUITE
Diagnostic imaging and other equipment.

NORMAN RAITT ARCHITECT

© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 23

GAMMA CAMERA ROOM WITH INJECTION AREA ELSEWHERE IN SUITE

Movement and observation

LEGEND

1. Patient / staff access from corridor, including occasional bed / trolley transfer (double doors).
2. Staff use link doorway to adjoining Gamma Camera rooms, if required. (alternative locations).
3. Staff may remain within the room during procedure, to observe / reassure patients.
 Mobile lead-glass screens will be required for local radiation protection.
 Minimum 2.5m separation needed between patients position and seated staff at image monitors.

Notes:

1350
Indicative Key Dimensions

Scale

Staff movements
Observation
Patient movements
Alternative patient movements

All sizes in mm

© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 24

P.E.T. SCANNER SUITE
Design for radiation protection

Version 1.0: March 2004
© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 25

P.E.T. SCANNER SUITE

Access and movement / Clinical equipment

LEGEND

See PLAN 26 for key to clinical equipment / fittings.

Notes:

1350

Indicative Key Dimensions

Scale

0 1 2 3 4 5m

Legend:

Staff movements

Observation

Patient movements

Alternative patient movements

All sizes in mm
LEGEND to PLAN 25 clinical equipment / fittings.

P.E.T. Scanner.

Gantry

Patient table.

Lead shielded storage cupboard for storage of long half-life radioactive materials used to calibrate P.E.T. scanner.

WT Worktop with cupboards units under, impervious and with coved upstands, raised leading edge and sealed joints.

(Possible spillage of radioactive materials.

WS Wall fixed cupboards / shelf.

WHB Clinical wash hand basin.

Hard copy printer for diagnostic images.

(if required locally).

PTR Patient couch for quiet waiting post-injection and prior to scanning procedure.

Small dressings etc. trolley.

C

CDC Secure drugs storage.

CONSOLE Scanner controls and image reconstruction monitors.

XRV x 4 Four-panel wall mounted X-ray viewer.

Notes:

1350 Indicative Key Dimensions

0 1 2 3 4 5m Scale

Staff movements Observation

Patient movements Alternative patient movements

PLAN 26 P.E.T. SCANNER SUITE

Key to clinical equipment / fittings.
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 27
SYMPTOMATIC MAMMOGRAPHY: SINGLE IMAGING ROOM
Access, movement, observation / clinical equipment and fittings

construction for Radiation Protection:
0.5mm lead equivalent at 100kV:
typically achieved by 100mm
DCM/brick walls: consult RPA.

Alternative radiographer control position closer to patient.

Mammography x-ray machine, free-standing on floor and semi-mobile.
Patient typically stands or sits in front of x-ray machine.

Power / control cabinet serving x-ray machine.
(900mm high nominal)

Space allowance for additional technical equipment if required.

Adjustable height seat for frail or wheelchair bound patient.

Small worktop with storage units under and x-ray viewer over.

Clinical wash hand basin.

Mobile x-ray protection screen with remote controls linked to mammography x-ray machine.

Power/data trunking for power and control cabling.

Emergency stop control for x-ray machine.
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 28

LEGEND

- Floor fixed dental examination chair, adjustable with indicative location of floor standing dental x-ray equipment.
- Small worktop with storage units under and twin wall mounted x-ray viewer over.
- Power / control cabinet serving x-ray machine. (900mm high nominal)
- Clinical wash hand basin.
- Space allowance for additional technical equipment if required.
- Mobile x-ray protection screen with remote controls linked to dental x-ray machine.

Construction for Radiation Protection:
Depending on the procedures and equipment, requirements will vary from 0.5mm lead equivalent for intra-oral x-rays only, to 1.5mm lead equivalent @ 75 kV, for panoramic dental x-rays by cephalostat.

All sizes in mm

NORMAN RAITT ARCHITECT

PLAN 28

DENTAL X-RAY ROOM

Access, movement, observation / clinical equipment and fittings

Version 1.0: March 2004

© NHSScotland Property and Environment Forum
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 29
MULTI-CUBICLE ULTRASOUND SUITE
Access and movement / key to clinical equipment

LEGEND

Ultrasound machine

Power/data trunking
Bedhead services
(incl. medical gases
if required).

Clinical wash hand basin.

Patient records and
reporting monitors.

X-ray viewer.

Wall fixed cupboard / shelf.

Worktop.

NOTE:
The shared layout and curtained
cubicles shown are appropriate
only for non-intimate
examination and for appropriate
patient groups (eg paediatric).
Numbers of cubicles comprising
a suite may vary.

Notes:

1350
Indicative Key Dimensions

Scale

0 1 2 3 4 5m

Staff movements

Observation

Patient movements

Alternative patient movements

All sizes in mm

NORMAN RAITT ARCHITECTS
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 30

SINGLE ULTRASOUND ROOM PLANNED / EQUIPPED FOR ROUTINE EXAMINATIONS AND MINOR INTERVENTIONAL PROCEDURES

Access and movement / key to clinical equipment

LEGEND

- **U** Ultrasound machine.
- **P/DT** Power/data trunking.
- **XRV** X-ray viewer.
- **WT** Worktop.
- **T** Lay-up trolley.

Patients records monitor.

Clinical wash hand basin.

Scale

- **0**
- **1**
- **2**
- **3**
- **4**
- **5m**

Indicative Key Dimensions

- **1350**

Notes:

- Staff movements
- Observation
- Patient movements
- Alternative patient movements

All sizes in mm

Version 1.0: March 2004

© NHSScotland Property and Environment Forum
Observation
Alternative patient movements

Notes:
Indicative Key Dimensions

PLAN 31
INTERVENTIONAL ULTRASOUND
Access and movement / key to clinical equipment
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

MR / CT SCANNER SUITE
Indicative diagram of room relationships

PLAN 32

© NHSScotland Property and Environment Forum
Alternative patient movements

Notes:
Indicative Key Dimensions

LEGEND

1. C.T. Scanner creates higher level of x-ray radiation compared with general x-ray machines. Bounding construction (including doors, observation screens etc.) requires indicative 3.5mm lead equivalent shielding.

2. M.R. Scanner requires R.F. cage construction all round to prevent image quality becoming degraded by adjacent ferrous materials / magnetic fields etc.

Notes:
1350
Indicative Key Dimensions

Staff movements
Patient movements
Alternative patient movements

PLAN 33 'BACK-TO-BACK’ COMBINED CT / MR SCANNER SUITE: INDICATIVE SECTIONS
Construction for radiation protection
Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 34

'BACK-TO-BACK' COMBINED CT / MR SCANNER SUITE: INDICATIVE
SECTION Diagnostic imaging etc. equipment / M&E services distribution
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 35

C.T. SUITE WITH TWIN SHARED SCANNER ROOMS, CONTROL ETC.

Room relationships
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

Legends

* Indicates access control.

Straight dashed line at room perimeter indicates R/F cage construction for control of interference from adjacent electromagnetic fields.

Curved dashed lines indicate intensity of local magnetic field generated by M.R. Scanner magnet, measured in gauss.

Heavy dashed line indicates 5-gauss contour to be contained within scanner room and adjacent controlled area in compliance with M.D.A. (Medical Devices Agency) requirements.

Lower intensity magnetic field (i.e. below 1 gauss contour indicated) may affect adjacent diagnostic imaging and other equipment. See text.

Gauss contours shown are indicative only for medium range 1.5 Tesla M.R. Scanner. Consult suppliers for specific details.

Magnetic structural and other steel work may influence the overall extent of fringe field.

Possible Controlled Access Ancillary Rooms (e.g. storage or utility)

M.R. Machine Room (Computer Cabinets etc.)

Scanner Room

Control Room

Lobby

Legend

Indicates access control.

Lower intensity magnetic field (i.e. below 1 gauss contour indicated) may affect adjacent diagnostic imaging and other equipment. See text.

Gauss contours shown are indicative only for medium range 1.5 Tesla M.R. Scanner. Consult suppliers for specific details.

Magnetic structural and other steel work may influence the overall extent of fringe field.

Notes:

Indicative Key Dimensions

Scale

0 1 2 3 4 5 6 7 8 9 10m

Staff movements

Patient movements

Observation

Alternative patient movements

Plan 36

Indicative extent of magnetic field
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 37

M.R. SCANNER AND CONTROL ROOM
Movement and observation

Scale

0 1 2 3 4 5 6m

Staff movements

Observation

Patient movements

Alternative patient movements

NORMAN RAITT ARCHITECT

All sizes in mm
Observation

Alternative patient movements

Notes:

Indicative Key Dimensions

PLAN 38

M.R. SCANNER AND CONTROL ROOM
Clinical equipment and fittings

© NHSScotland Property and Environment Forum
SHPN 06: Facilities for diagnostic imaging and interventional radiology

PLAN 39
Layout of typical Diagnostic Imaging Department
WISHAW GENERAL HOSPITAL

Version 1.0: March 2004
© NHSScotland Property and Environment Forum
Appendix 2: Engineering requirements

Section 1: Specific engineering requirements

Introduction

1.1 This section describes specific engineering services requirements for diagnostic imaging and interventional radiology. It complements the general engineering services guidance given in SHPN 03: General design guidance. The combined guidance should not inhibit the design solution, but will acquaint the engineering members of the multi-disciplinary design team with the design criteria and material specification need to meet the functional requirements. Specific requirements should be formulated in discussion with both end-users and manufacturers of specialist equipment. Some issues, particularly those related to radiation safety, will require specific and detailed discussion with other professional consultants including the local RPA.

1.2 The majority of text below is concerned with the proper installation of the equipment in a suitable environment to enable high standards of reliability and overall imaging performance. However, designers should also consider the needs of the small percentage of patients who may be attending from areas of critical care and therefore careful attention should be paid to standards of infection control and overall cleanliness (also refer to SHPN 03: General design guidance). The ventilation rates in some of the examination rooms, particularly those associated with CT and fluoroscopy, may need to be increased. It is likely that these examination rooms will also be used for minimally invasive interventional imaging procedures and the environment should therefore be compatible with this clinical objective. Further guidance is contained in SHTM 2025 on the design of ventilation systems for clinical spaces. The project design team should include infection control and anaesthetic policy officers, who will be able to provide further advice on the movement of critically ill patients to the diagnostic imaging department.

Safety

1.3 One of the requirements of the legislation listed in SHPN 03 is to ensure, so far as is reasonably practicable, that design and construction are such that articles and equipment will be safe and without risks to health at all times when it is being used, cleaned or maintained by a person at work. The 1999 Ionising Radiations, the 2000 IRME Regulations and the associated Codes of Practice place onerous requirements upon engineering aspects of design and operation of diagnostic X-ray imaging modalities. Over and above this, there are additional requirements from the 1993/2000 Radioactive Substances Act in respect of storage, use and disposal of radioactive materials. The RPA and Custodian of Radioactive Substances must be consulted in this regard.
Environmental requirements

1.4 Detailed environmental requirements for specialist equipment should be obtained from original equipment manufacturers. The comfort of patients and staff is also an essential consideration in respect of temperature stability and the effects of waste heat derived from high-powered diagnostic imaging systems. Humidity and temperature control will frequently be a key feature of successful design. Centralised chilling and air-conditioning units should be considered in preference to local stand-alone units.

Space for imaging generators, transformers, computers, plant/services

1.5 Where appropriate, space for electrical equipment, such as generators, gradient cabinets, plant and services should be provided with easy and safe means of access. The space should be protected from unauthorised entry with authorised entry needed for inspection and maintenance. Sufficient access panels should be provided for this purpose. In the provision of panels and access points, consideration must be given to ensuring the integrity of fire barriers and that the control of smoke is appropriately maintained.

1.6 Particular consideration must be given to the need for the eventual removal and replacement of plant, transformers, generators and other related items of diagnostic imaging equipment.

1.7 All mechanical and electrical services entering rooms potentially containing radiation must be routed through specially designed access ports so that shielding is compromised as little as possible. It may also be necessary to design-in changes in direction of ductwork, and cable containment systems to provide protection against radiation leakage in some examination rooms, such as in the imaging rooms containing fluoroscopy and CT equipment. The RPA and original equipment manufacturer will need to be consulted with respect to the above.

1.8 In some installations, existing services may pass into the room at low level, from an adjacent plant or technical room, and rise into their final position close to the actual imaging equipment. An example of this configuration would be centrally-located fluoroscopy equipment mounted on a combination of a C-arm and L-arm as described in the main text.

1.9 The precise installation arrangements will be modality and project-specific and should be determined with the installation specialist of the original equipment manufacturer. Specific requirements for MRI installation are detailed in Section 8 of this appendix.

Access to control and isolation devices

1.10 In a diagnostic area the access arrangements must not compromise the radiological protection provided for these rooms. Consideration should be given to the comfort as well as the safety of patients and others.
Engineering commissioning

1.11 The services for some diagnostic imaging equipment may need to be commissioned before the final completion of the engineering contract programme. This is to allow the imaging equipment commissioning to be completed prior to the arrival of the first patient. Parts of this commissioning are concerned with radiation safety, and the approval of the RPA must be obtained for the imaging processes and schedules proposed.

Mechanical services

Ventilation

1.12 The majority of the areas within the facility will require mechanical ventilation, due to equipment heat gains, patient/staff numbers and clinical reasons. Arrangements should not prejudice protection from ionising and non-ionising radiation.

1.13 The supply plant for ancillary accommodation should be separate from plant serving the imaging services department.

Ventilation controls

1.14 Supply and extract ventilation systems should include indicator lamps to confirm the operational status of each system. Where a system is provided for a particular space, the indicator should be in, or immediately adjacent to that space, and local controls should be provided as appropriate. Where manual controls are available for staff use, they should be provided with labels clearly defining their function. Where manual overrides of time switches controlling the running periods of ventilation plants are provided, they should be grouped with the temperature control overrides.

Ventilation (substances hazardous to health)

1.15 In the provision of diagnostic imaging services this will primarily relate to the use of chemicals in film processing and radioactive substances in radionuclide imaging.

Hot and cold water services

1.16 Special considerations exist in MRI and are outlined in Section 8 of this appendix.
Electrical services

Lighting – general circulation and waiting areas only

1.17 Architects and electrical engineers should also be aware that many patients will arrive in the department on trolleys and beds and may wait in specifically designated waiting areas. The lighting should be designed to ensure that these patients do not have look directly into bright lights. The use of uplighters and other covering devices is appropriate. Dimmer switch-controlled luminaires may be appropriate in some instances.

1.18 Emergency lighting of control rooms should be arranged in accordance with the requirements of users and also the guidance in SHTM 2011.

Illuminated signs

1.19 At each entrance of a controlled area within an X-ray imaging suite, a safety sign and a warning lamp must be provided in order warn people that they are entering a controlled radiation area and to comply with the statutory requirements for radiological protection (the 1999 Ionising Radiations Regulations). The warning lamp must give a clear indication in red when it is energised and should incorporate the legend ‘Do not enter’, visible only when illuminated. All warning lamps should have incandescent filaments energised from a suitable power source within the room and switched via appropriate devices interlocked with the operation of the diagnostic equipment.

1.20 Exceptions to this design requirement are where the means of access is interlocked with the equipment and controlled directly by the staff, for example where out-patient changing cubicles are designed to be directly adjacent to the X-ray imaging room.

1.21 Other illuminated signs may also be required within the department. All such signs should be connected to essential supplies where necessary.

Socket-outlets and power connections

1.22 Sockets provided for all portable appliances as noted in SHPN 03 should not be connected to circuits that are used in conjunction with X-ray units. This is due to the possibility that these systems may ‘dump’ considerable amounts of energy to earth. It is likely that some of these sockets will be used in conjunction with patient monitoring equipment. Care should be taken to ensure that sockets of opposite phase supplies are placed at least 3m apart.

1.23 Socket outlets in consultation/examination/treatment areas and wherever X-ray films are processed, reported on or stored, should be connected such that within each area a supply is available from at least two separately fused circuits of the same phase.
Electrical supplies to diagnostic imaging equipment

1.24 The imaging performance and overall reliability of diagnostic imaging equipment can be severely compromised if the systems are connected to contaminated electrical supplies. This will also be the case where there is a higher than required impedance on the earth circuit measured directly back to the central protective earth of the hospital. It is therefore advised as part of a risk control strategy, and before the installation of new or replacement of old diagnostic imaging equipment, that analysis of the proposed incoming power supply including the earth and neutral lines should take place. The analysis should take place for at least for 24 hours during normal working hours, and look for surges, spikes, sags and electrical variations in the earth. The data collected should be reviewed with the original equipment manufacturers to ensure that it meets their specifications in terms of tolerance values.

1.25 Diagnostic-imaging equipment should be installed to a WYE standard and to meet the standards of BS 7671: Electrical installations in buildings (IEE 16th Edition), including Guidance Note 7 – special locations, Section 10, Medical locations in its latest revision. In essence, the majority of diagnostic imaging equipment will require a three-phase supply up to 480V and 30A per phase, at 50 Hz. In addition, a separate neutral line and earth connection will be required to meet the installation requirements. The majority of diagnostic imaging equipment is manufactured and originally tested outside the UK and is designed to meet the USA 60Hz system. Before the equipment is transferred to the UK, a 60 to 50 Hz conversion is made. The original equipment manufacturers have solved virtually all conversion problems, but on the rare occasions that problems are observed at the electrical installation and commissioning stage, investigation may be required.

1.26 Advice on the power supply and requirements for fixed and mobile diagnostic imaging equipment is contained in SHTM 2007: Electrical Services – supply and distribution. Individual project requirements should be discussed at an early stage with manufacturers/suppliers of equipment.

1.27 Individual project requirements, including the relative arrangements of rooms within the department, will largely decide whether a radial or ring type feeder system is appropriate. While lower circuit impedance favours the ring circuit, difficulty in looping heavy current cables at the terminals of switch-gear should be borne in mind. The sharing of final feeders between several X-ray diagnostic imaging rooms should take account of the diversity of usage, with particular reference to exposure duration and frequency and the provision of a clean electrical supply to meet manufacturer’s requirements. The lowest diversity is accorded to the equipment used for X-ray fluoroscopy/fluorography and interventional procedures. Power terminations within diagnostic rooms should be appropriately protected by a fused switch.

1.28 The earth connection at the power termination should be suitable for the functional earth requirements specified by the radiology equipment manufacturer, and be arranged to receive a direct connection from the earth reference terminal, which should be provided or designated in every diagnostic imaging room. The purpose, characteristics and performance criteria of an earth
reference terminal in a diagnostic imaging room are described in the ‘protective earthing’ section of the Department of Health’s specification document TRS 89 relating to the supply and installation of equipment for diagnostic imaging and radiotherapy equipment. This should also meet the requirements of the latest edition on the IEE 16th Edition of electrical wiring regulations BS 7671: Requirements for electrical installations. The earth wire should be of copper, rather than steel wired armoured design, to minimise the impedance between any part of the equipment and the earth reference terminal. The provision of separate ‘earth mats’ may be appropriate for some items of equipment where the impedance measured to the central protective earth of the hospital is higher than that specified by the equipment manufacturer. They may also be appropriate where there is a requirement to maximise the reliability and imaging performance of the equipment. Routine checks should take place annually and a thorough testing should be undertaken at a period not greater than 5 years, as advised by guidance Note 3 of BS 7671:2001: Inspection and testing.

1.29 Numerous electrical interconnections are required between the separate components associated with a complete diagnostic suite installation. Conduit and cable trunking should preferably be installed by the electrical sub-contractor, to a layout satisfying the requirements of the original equipment manufacturer, who will normally supply and arrange for the installation of the interconnections. Some cables have limitations on maximum length and radius of bends, such as high-voltage cables.

1.30 While it is preferable for all the components associated with a diagnostic room to be located therein, the relative positions will depend on operational requirements and room features. Control consoles and control equipment cabinets, however, are usually located adjacent to or against perimeter walls. With these features in mind, the cable distribution may be accommodated in a perimeter floor duct located approximately 200mm from the walls, from which spur ducts traverse the floor to island equipment or rise via wall-mounted units to terminate at cable trunking above the ceiling.

1.31 Floor trunking should be of the continuous-lid load-bearing variety of nominal minimum 75mm screed depth. Changes in direction of trunking should be provided with an internal angle gusset. All trunking lids, when removed, should give total access, so that cables may be laid in, rather than drawn into, the trunking, without negating the possibility of drawing in individual cables during periodical maintenance by lifting lids only at angles or tees. Should it be necessary for trunking to pierce walls, there should be adequate straight sections on either side of the wall to enable pre-formed cable termination assemblies to be fed through such an opening without difficulty. There is a requirement to maintain fire barriers and integrity where trunking passes through designated fire compartments.

1.32 The surface finish of cable trunking visible within diagnostic rooms should be commensurate in quality with the equipment consoles, cabinets and overall clinical function of the suite as described for each modality in this guidance. Conduit or trunking routes piercing radiological barriers, such as diagnostic room perimeter walls, should be provided with adequate radiation shielding or dense in-fill material.
Electrical interference

1.33 In diagnostic imaging, there may be some cases where there is a requirement to site other electronics cabinets (not connected with the imaging system), mains power outlets or the earth reference terminal at least 1.5m away from the X-ray generator cabinets and transformers. This may need to be undertaken to minimise the risk of interference to the imaging system and induction of voltages in the electrical earth.

Staff location system

1.34 The hospital staff location system should be extended to include this department. Further guidance is contained in SHTM 2015: *Bedhead Services*. There are particular advantages to the use of such systems in diagnostic imaging. For example, patient groups who have undergone interventional procedures have emphasised the value in continuity of contact with a familiar care team and individual members of staff.

Telephones

1.35 Depending on local policy, at least one ex-directory line should connect directly with the local ambulance services control centre. It should have a distinctive bell, buzzer and colour or other distinctive marking.

1.36 Phone connections may be required from each of the modality control consoles to allow remote monitoring of equipment by manufacturers at their UK or foreign bases.

Intercom systems

1.37 Due to the character of the diagnostic techniques used within imaging services, it will be appropriate to provide intercom stations in addition to the telephone and call systems. These permit ‘hands-free’ speech contact, either staff/staff, patient/staff or staff/patient. Consideration should be given to the local circumstances and treatment/imaging methods or procedures.

Data and equipment links

1.38 Data systems specific to diagnostic imaging include:

- PACS networking or mini PACS systems, including those necessary for RIS and HIS terminals, where appropriate;
- coaxial cabling e.g. from a modality to a laser printer or print manager/router/hub;
- reporting systems in the form of digital dictation units networked to secretarial offices.
CCTV

1.39 Closed-circuit television should be provided, where required, to monitor patients undergoing treatment in restricted areas. The interference to which such equipment may be subjected should be considered when it is specified, to ensure acceptable electromagnetic compatibility. Care should be taken in the positioning of monitors in order to preserve patient privacy.

1.40 Security closed circuit television may be required to interface to the whole hospital system.

1.41 CCTV systems may be required in certain examination rooms under the appropriate modality. Colour CCTV systems may be required, in order to monitor patients from a more remote location, such as a control area, when they are undergoing general anaesthesia or sedation.

1.42 CCTV systems may also be installed into waiting areas and connected to monitors in staff circulation areas such as processing and staff rest rooms in order that they are able to oversee patients entering the department. This may be particularly useful where diagnostic imaging serves A&E.

Clocks

1.43 Clocks in any anaesthetic or resuscitation room should display ‘real time’, ‘elapsed time’ and have a sweep second hand.

Music and television

1.44 Conduits for television/video and background music system outlets should be provided to public areas, bed heads and treatment rooms.

1.45 The provision of an independent or independently-controlled music distribution system from the rest of the hospital should be considered in light of local patient needs.

Internal drainage

Chemical and radioactive contaminated effluent

1.46 Providing that there is adequate dilution and the silver content has been effectively recovered, the effluent can be discharged into the internal drainage system. Project teams are advised to establish the acceptable levels for silver and other processing chemicals at the planning stage of a scheme, as they are subject to change.

1.47 The drain from the toilet and radioactive waste-disposal sink associated with the diagnostic room where radionuclide imaging is undertaken will carry radioactive effluent. It must be sealed throughout its run to the main sewer and its route chosen with regard to the areas likely to be affected if leaks develop. It is recommended that drainage for this purpose should not be into a pumped
system. The RPA or an appropriate expert in this area should be asked to undertake a risk assessment for releasing radioactive substances into the environment to ensure that members of the public are not subjected to excess risk. Designers must ensure that all risks associated with contaminated effluent are conveyed to the pipework maintainers, who in turn must implement procedures to ensure that members of staff are not exposed to potential risks from these substances.

1.48 At an appropriate early stage in the design process, project teams and local water authorities should discuss and verify the project proposals for the collection and discharge of chemical and possibly radioactive-contaminated effluent. Local water authorities will probably advise on restrictions on the quantity and rate of discharge of such effluent into public sewers.

Transfer of equipment to installation site

1.49 The method used to bring diagnostic equipment into a department should need to be carefully considered. Although the majority of diagnostic imaging equipment is broken down into modules for transportation and then re-assembled on site, these modules can be large and in some cases have masses that exceed 1 to 2 tonnes. The equipment will usually be transferred in wooden crates, which has the effect of increasing the overall dimensions. It is therefore advised that architects and estates managers consider at early planning stages how the equipment will be transferred to the proposed site. Care should be taken over the width and height of doors, loading specifications for floors and the turning circles of the equipment. Careful thought should be given to future replacement of equipment with regard to possible increases in size and weight.

Radiation protection

1.50 The X-ray and radionuclide imaging suites within the department and any other rooms using ionising radiation should be designed to meet the requirements of the Ionising Radiations Regulations 1999.

Controlled area

1.51 Under the Ionising Radiations Regulations 1999, the examination room containing the X-ray tube or sometimes called an X-ray generator will be designated a controlled area. This is due to the average ionising radiation dose rate or exposure present in this area and access is restricted to authorised members of staff. It should be noted that radiation is only present when the X-ray tube is activated but codes of practice require the area to be controlled, on the basis of average dose rate present, in order to restrict access and control radiation exposure to both staff and patients.

1.52 If the X-ray tube is activated, as it may be for long periods in fluoroscopy/fluorography examinations, radiographers/technologists and radiologists should only remain in a controlled area if they are wearing protective clothing such as lead protective jackets, thyroid shields and lead glass spectacles. This may be
necessary in the performance of their duties, such as operating the X-ray unit, clinically directing the procedure and caring for the patient during the procedure. All protective clothing should be located outside X-ray fluoroscopy/fluorography rooms so that members of staff can protect themselves when entering a room during a procedure without necessarily having to interrupt proceedings.

Supervised area

1.53 The X-ray control area, formed by the radiation attenuating screen or provided as a separate room, will not, in the majority of circumstances, be part of the controlled area described above, but may be designated a supervised area under the 1999 Ionising Radiation Regulations.

1.54 Within a supervised area the average radiation dose rate will be less than that within a controlled area, but may remain slightly higher than that of nondesignated and non-controlled areas. Access will be limited to authorised persons in a similar manner to controlled areas, but the supervised area may be accessed by a wider group of medical personnel under supervision of the authorised person.

1.55 In some instances, the technical room associated with X-ray fluoroscopy/fluorography suites may be designated a supervised area and accessed only by trained radiographers/technologists and X-ray engineers.

Non-controlled areas

1.56 Non-controlled public access areas must be shielded to allow only very low radiation exposure arising from the use of X-ray units. The limits of permitted exposure are controlled by legislation as interpreted and determined locally by the RPA.

1.57 In a number of cases it may be necessary to have the control area nondesignated, in terms of average radiation dose rate present, to allow members of the public to enter the control area during an examination. In this instance, the level of radiation attenuation provided by the construction of the screen may need to be increased and careful consideration given to the layout and geometry of the screen in relation to the position of other major items of equipment in the examination room. The purpose here is to reduce any scattered radiation into the control area in order to allow this area to be nondesignated. The RPA, working with the manufacturers of the X-ray equipment and lead-lined screens, will advise on this area to a greater detail. This is of particular importance in fluoroscopy and interventional/angiography installations.

1.58 Other visiting professional medical staff groups may enter this area when accompanied or supervised by radiographers/technologists or radiologists for example. If they are in the controlled area during a procedure, they usually can remain, providing they are wearing protective clothing and are under the supervision of an authorised person.
Structural and design considerations

1.59 The controlled area, usually the X-ray procedures room, must be bounded by ionising radiation-attenuating construction, usually lead ply, barium plaster, or concrete forming the boundaries of the space. Alternative materials could be used for X-ray mammography as described in Section 10. As all X-ray rooms will be controlled areas as defined in those regulations, all defining structures, including floors and ceilings, must be radiation protected. The choice of construction materials for floors, ceilings and walls must be agreed with the RPA, who must also be consulted on overall radiation protection standards, including aspects of design and room layout.

1.60 The size and weight of imaging equipment should be checked very early in the design process as some can weigh well in excess of 30 tonnes and may not be able to be split into easily manageable sections. This will have implications on department location with regard to initial delivery and future replacement. Some equipment will require secure and stable ceiling support which may involve secondary structural steelwork. Consideration must be given to the dimensions of bunkers for future flexibility. They should be designed to take future high energy machines. This may cause slightly higher initial installation costs but will prevent future problems.

1.61 Some imaging equipment may require a completely level and/or vibration free environment. Great care is required in designing the structure for these modalities.

1.62 Patient entrance doors into the room must be radiation shielded, and must open in such a way as to protect those entering into the controlled area. The shielding required will depend on the type of room or suite. This aspect of design will be an important part of the consultation with the RPA. There must be ‘Controlled Area’ and ‘X-ray on’ warning lights over the door, connected to the X-ray set power supply and generator described above.

1.63 In respect of the staff entrance to X-ray rooms from the control area, the need for a radiation-protected door will depend on the route into the room, the use of shielded screens and walls separating the control area from the X-ray room and whether the control area is designated supervised or non-controlled.

Remote diagnosis services

1.64 All manufacturers of diagnostic imaging equipment now provide a modem or direct telephone connection to the main imaging or control workstation of the imaging modalities supplied. This facilitates the remote diagnosis of faults and supplements the site maintenance programme on the equipment installed. Diagnostic imaging companies can, therefore, discover and correct problems remotely. Alternatively, the manufacturer can establish the nature of the problem before the engineer attends on site thus reducing the down-time on the machine. Potential conflicts arise when the main imaging control workstations are also connected to RIS/PACS or HIS, as the configuration of this connection conflicts with NHSS policies on data security and secure network connections.
1.65 It is a real advantage for the hospital to provide higher equipment uptimes and reductions in the cost of maintenance contracts, by using these remote diagnosis and repair facilities. Potential solutions, which allow remote diagnostics and comply with relevant NHSS policies, are briefly outlined below:

- use of the established NHSS net through local or wide area networked nodes;
- the provision of routers and as part of PACS or RIS networks;
- the configuration of electronic firewalls on the main imaging console, thus preventing unauthorised access to patient data.

1.66 The method used to provide for remote access services for each of the diagnostic modalities should be decided at an early project stage, as the building will have to be appropriately cabled and data/telephone connections integrated with the design of the diagnostic suites.

Section 2: General X-ray systems

X-ray tube basics

2.1 The X-ray tube comprises an ‘insert’ (an evacuated glass envelope containing the electrodes – anode and cathode) fitted within an oil-filled cylindrical metal housing or ‘shield’. The housing is lined with lead to reduce the emergence of unwanted X-radiation but has a port or ‘window’ through which the useful X-ray beam emerges.

Mechanical ventilation

2.2 Waste heat is generated by the X-ray tubes, by the high-voltage X-ray generator cabinets and by other associated equipment and persons working in these rooms. If high-level roof lights are provided, they will need to be ‘dimmed-out’ during discrete stages of the examination, limiting the possibility of natural ventilation. General-purpose X-ray rooms therefore require mechanical supply and extract ventilation to dissipate waste heat and to maintain comfortable conditions for staff and for patients.

2.3 According to the particular heating loads arising from the specific diagnostic equipment and from other design factors, it may be necessary for supply air to be cooled.

2.4 The use of mobile ceiling-suspended X-ray tubes necessitates a minimum clear height requirement of 3.1m over a large proportion of the ceiling area, and also necessitates the installation of a substantial support framework above the ceiling. Mechanical ventilation grilles are therefore likely to be installed at high level around the perimeter of the X-ray room, and to be served by ductwork located above lower ceilings in adjacent areas.
Lighting

Daylight

2.5 For the protection of people in adjoining spaces from the effects of radiation, the examination room should not incorporate any windows, although skylights or high level lighting may be provided depending on design and siting and the requirement to protect persons in adjacent areas from ionising radiation. If such skylights are installed, systems of work, local access rules and operational policies need to be put into place to avoid the risk to maintenance personnel working on roof-tops. Blackout blinds must be provided in such instances so that the radiographers/technologists can darken the rooms as required.

Artificial light

2.6 In most cases, the design and location of the light fittings will need to be integrated with the requirement for extensive ceiling tracks and support frames needed to support the movable ceiling-mounted X-ray tube. The following are key requirements:

- patients under investigation who may be lying on ‘patient’ tables should not have to look directly up into bright lights;
- the movement of ceiling-mounted equipment should not unduly obstruct the light produced;
- variable levels of illumination should be made possible by the use of dimmer switches, to enable certain tasks to be performed. For example:

 (i) a low level of lighting (‘dim-light’) is required for a radiographer/technologist to clearly see the light beam diaphragm when positioning a patient and aligning the X-ray field. This level of light may also enable a member of the clinical team to review images on wall-mounted X-ray viewers or on a computer workstation located within the control area;

 (ii) intermediate general lighting is required for certain radiological investigations;

 (iii) high intensity lighting is needed during equipment maintenance procedures.

2.7 The use of spotlights is not usually required for general radiographic X-ray rooms.

2.8 The construction of modular suspended ceilings enables modular ceiling panels and recessed lighting fittings to be interchangeable. When a suspended ceiling cannot be provided, it will be preferable to install lighting fittings at or near the junctions of walls and ceilings. If lighting fittings are at lower levels on walls, or near to eye level, they can cause an uncomfortable glare.
Floor design for general X-ray imaging rooms (including support spaces)

2.9 In the provision of floors for diagnostic imaging equipment, traditional construction methods consisting of a concrete slab or sub-floor with a screed of normal thickness may not allow the flexibility needed when installing interconnecting cables between items of equipment. This failure may become apparent when equipment is renewed, an activity that may take place a number of times during the lifetime of a building or facility. This problem is not as acute now as it was ten years ago, because the equipment has become more modular, is more compact, there are fewer interconnecting cables and the installation methods have been developed further by the majority of X-ray manufacturers.

2.10 There is also the possibility that the function of the room may change. Because of this, the floor in the actual general X-ray room should be capable of supporting a total load of up to 5000kg, although no single item of equipment is likely to weigh more than 2500kg. Manufacturers and suppliers should be consulted on the likely weights of such equipment. The floor should permit easy installation of trunking for cables (e.g. perimeter ring duct), 100mm in depth, with a minimum cross-sectional area of 150cm².

2.11 Considering the above requirements, it is advised that standard floor construction methods are used when installing X-ray equipment for imaging and interventional equipment in the actual room itself. Other possibilities exist for the control area and other supporting facilities and these are described further below.

2.12 Diagnostic imaging and interventional facilities should be installed on the ground floor, as this reduces the complications of installing and transferring equipment to the designated space. If, however, imaging modalities need to be located on an upper floor, possibly as part of a department, this can only be achieved at the expense of restricted storey height to the accommodation below. The load-bearing capacity of the main hospital lifts may have to be increased in order to take the weight of the imaging equipment. Alternatively, large heavy lifting cranes may have to be used to transfer the equipment into the department. The radiation protection offered by the floor, walls and ceiling around the imaging examination room will have to be considered and discussed with the RPA at an early design stage. This may result in increasing the size of the structural floor slab, for example, or the use of lead lining in the walls or barium plaster.

2.13 The perimeter ring duct needs to have a clear internal height of 100mm and will normally be constructed of galvanised steel with a suitable flush-fitting removable lid. The floor finish should be continuous and sealed, but have a welded inset to delineate the position of the floor duct and access points.

2.14 Some floors may require an increased thickness of screed (over-slab) when a perimeter ring cable duct is used. From this cable duct connections may be made to the generator, equipment racks and control console.
2.15 In the event of equipment being enhanced or renewed, additional cable trunking risers may be connected to the perimeter duct.

2.16 This type of floor would, therefore, consist of:

- a continuous sealed floor finish;
- slab and screed to be detailed to accommodate the trunking used and ensure that the floor surface throughout the department is all at the same level;
- a separating membrane;
- a structural floor slab or a concrete sub-floor;
- a perimeter duct of 100mm clear height and 150mm minimum clear width.

2.17 The drying-out period for over-slabs of this nature is significant and may well be in the region of 25 weeks. Account of this should thus be taken at an early stage in the construction programme. However, certain types of over-slab laid by specialist contractors offer substantially reduced drying-out periods.

2.18 To ensure ease of access for wheelchairs, trolleys and beds, the floor surface should be at the same level as the surrounding corridors. For hygiene and ease of maintenance, the floor finish should be impervious to fluids.

Control and support machine room options

2.19 A further option exists for the installations of floors in separate machine and control rooms associated with the use of specific imaging modalities.

2.20 In the option described below, there should be consultation with the X-ray equipment manufacturers before the design of these types of floors. In some instances, there may be concerns regarding infection control and decontamination of lightweight modular access floor types.

Lightweight modular access floor

2.21 This option allows for a hollow floor, which, in principle, offers complete flexibility for cable runs between the control and equipment and examination rooms and is similar in concept to a floor associated with a computer installation.

2.22 This type of floor would, therefore, consist of:

- a continuous sealed floor finish;
- a proprietary or similar modular access floor with a recommended clear depth of 200mm formed with standard floor panels, normally 600mm square, on adjustable screw jack supports;
- a structural floor slab or a concrete sub-floor with power-floated finish.
2.23 It may be necessary to give consideration to the detailing of concrete or steel supports to carry the loads of any large items of equipment, possibly modality control workstations. A base plate may be required, necessitating the trimming of floor panels around it. It is also particularly important to consider the movement of equipment during installation and how large items of X-ray imaging equipment may be moved through a support area.

X-ray tube support

2.24 X-ray tube supports can be floor-to-ceiling or ceiling-suspended, with tracks as appropriate. The type chosen will depend on the radiological application. Care should be taken to ensure that the range of all the movements of the tube is sufficient for the techniques envisaged. The tube mounting must permit the X-ray tube to rotate about its long and short axes and around the vertical column. The facility to lock the X-ray tube rigidly in any selected angle at a pre-selected film focus distance is essential. The types of tube support are:

- a floor-to-ceiling column which may be either static or movable on floor and ceiling track(s); it comprises a vertical column with a counterpoised cross-arm for the carriage of the X-ray tube and mounting;
- a ceiling-mounted tube support comprising a vertical telescopic column suspended from a carriage assembly running on ceiling tracks longitudinally, laterally or both.

Mechanical support of ceiling-suspended X-ray tubes

2.25 The majority of general X-ray diagnostic rooms contain ceiling-mounted X-ray tubes. To support the overhead equipment and its services, it is recommended that a load-bearing modular steel grid should be hung from the structural floor slab of the storey above. This will provide built-in flexibility for the choice and location of equipment, both initially and in the subsequent life of the building. The grid should be integrated with the suspended ceiling, concealing primary services distribution, and designed so that the tracks can be mounted wherever required at the level of the suspended ceiling. The latter should comprise demountable modular tiles with interchangeable recessed modular lighting fittings, which are capable of being placed in any desired position so that they are not obstructed by the equipment.

2.26 The ceiling-mounted general X-ray equipment that is currently available can impose a moving load of up to 500kg and a possible horizontal force of up to 600kg. The maximum deflection of the supporting tracks when loaded must not exceed 1.5mm, irrespective of the location of the carriage. Project teams are advised to consult the suppliers or manufacturers about the weight factors of all equipment, as they can vary considerably.

2.27 The structural support grid must be designed to ensure that the X-ray tube is unable to expose when placed in the control area of the diagnostic imaging room. This can be achieved by constraining the design of the ceiling suspended grid or by placing small rubber stoppers at discrete points of the grid to prevent the X-ray tube moving into a position where it could expose in the control area.
2.28 In general X-ray imaging rooms, there must be a clear minimum height of 3.1m (over the whole room) between the finished floor level and the underside of the support grid for the direct suspension of radiological equipment to enable certain types to be operated over their full working range.

Construction of walls and radiation protection

2.29 There are two types of wall in diagnostic rooms, one of solid construction and the other hollow-core partitioning. The latter provides flexibility in the use of rooms and enables services to be installed within them. Both types of wall must provide radiation protection to the standards required to ensure that adjacent spaces are protected from ionising radiation. The structural protection required will depend on a number of factors, including the workload, energies of radiation used and the reduction in radiation exposure levels required to protect staff and the members of the public in adjacent areas. As a general guide only, 2mm of lead equivalence is usually adequate to provide sufficient radiation protection in general X-ray rooms and this can be achieved by the use of lead ply and barium plaster. The RPA should be consulted when determining requirements. Ducts, pipes, and holes through walls should be radiation protected by the use of ‘dog-legs’ or other devices. Project teams should again consult the RPA for advice on the use of these devices. Walls should have a load-bearing capacity for equipment, in particular for the provision of radiation protection equipment such as lead coats, jackets etc. This requirement may involve a side thrust of up to 200kg and point loads of up to 100kg. Walls should be flush and without structural protrusions.

Section 3: Special engineering requirements for conventional and remote fluoroscopy systems

Floor and ceiling loading

3.1 The floor design will be similar to that described for general X-ray suites. However, the installation of this equipment includes a ceiling suspended X-ray tube and floor-mounted conventional or remote fluoroscopy equipment. This equipment will be far heavier than the patient couch for the standard general X-ray room and this should be taken into consideration at the early planning stages. The weight of the main fluoroscopy equipment will up to 2000kg or 2 metric tonnes, with the weight of the cabinets up to 400kg.

Environmental considerations

3.2 The heat loads in the suite from the equipment will be far higher than those for general X-ray units and therefore the provision of air conditioning may be required to maintain staff and patient comfort. The actual specifications should be obtained from the manufacturers and the room planned to meet the worst case requirements. The equipment should be operated between temperature ranges of +15°C and +30°C with relative non-condensing relative humidity of between 30% and 75% and pressures of between 70kPa and 106kPa.
3.3 Care should be taken over the magnetic field environment around the equipment, as the function of the image intensifier can be downgraded by fringe fields from MRI scanners.

Power consumption

3.4 The power consumption will depend on the type of generator procured for use with the X-ray system and will depend on the clinical application. The nominal ratings for the X-ray generators are between 30 and 80kW, instantaneous power for 0.1 seconds. For these types of examinations and equipment it is likely that the specifications will require a generator rated between 65 and 80kW, and the larger of these units will consume 145kVA on a transient basis during fluorography exposures.

Lighting – dimmable for use with monitor screens

3.5 Light fittings must be located with reference to the positioning of the X-ray table and tube stand. Very carefully designed locally variable light level control must be provided in the imaging room. Poor lighting design that, for example, fails to eliminate reflection on monitoring screens or allow local dimming can adversely affect fluoroscopic imaging perception.

3.6 Colour corrected lighting should be provided in all patient areas and in the image review room workstation. Level control and the avoidance of reflections in monitors in the image review room workstation are essential.

3.7 Emergency lighting and power should be provided in the catheter laboratories, recovery area and generator/computer rooms.

Electrical supplies and UPS provision

3.8 Some types of fluoroscopy equipment may store images to volatile RAM within the control computer during the conduct of the procedures. Therefore, a power supply failure during an examination may mean that images acquired during the procedure may be lost. Where this occurs, there may be a requirement to repeat the examination or procedure, which, amongst a number of other factors, will increase the radiation dose to the patient. It may, therefore, be necessary, as part of a risk control and overall uninterruptible power supply strategy, to wire the power supplies of the control computer separately from those of the X-ray system, whilst ensuring that systems have a common earth. The use of an uninterruptible power supply incorporated into the circuit to the control computer would militate against data loss in the event of a power supply failure and allow the radiographer/technologist to print the images or send them to another computer workstation. The actual X-ray unit may be powered using emergency supplies during a primary power failure, but the decision to undertake this process should be part of an overall risk control strategy. It should be noted that any switch back following the re-establishment of the primary supply (from emergency) should be undertaken manually, to avoid any members of staff mistakenly assuming that the system has powered down.
Section 4: Special engineering requirements for interventional and cardiac imaging systems

Floor and ceiling loading

4.1 The floor design will be similar to that described for general X-ray systems. Careful consideration should be given to the route of cable runs between the generators and electrical supply cabinets to the X-ray and the patient couch, which will usually incorporate powered movements in all three orthogonal directions.

4.2 The floor and ceiling loading for this type of equipment will be higher than for general X-ray units and conventional/remote fluoroscopy equipment as described above. The C-arms where the image intensifiers and X-ray tubes are mounted may weigh up to 2 metric tonnes, and consideration of this factor should be given in overall planning and structural design terms.

Environmental considerations

4.3 Full air-conditioning and filtration should be incorporated into the fluoroscopy suites and recovery area, and should be able to be manually controlled from within each area. This should be connected to a different electrical circuit to that used for the imaging equipment. In general terms, a maximum air change rate of between 12 and 15 air changes per hour is seen as appropriate to control room temperature and infection in the examination room.

4.4 The equipment should be operated between temperature ranges of +15°C and +30°C with relative non-condensing relative humidity of between 30% and 75% and pressures of between 70kPa and 106kPa.

4.5 Care should be taken over the magnetic field environment around the equipment, as fringe fields from MRI scanners can downgrade function of the image intensifier.

Lighting – dimmable for use with monitor screens

4.6 See paragraphs 3.5 to 3.7 of this Appendix.

Power consumption

4.7 Generators for use with interventional fluoroscopy equipment will usually be rated at 80kW over 0.1 seconds and thus a maximum power consumption of 145kVA for the system can be expected.

4.8 Systems for cardiac angiography are fitted with a generator of 100kW rating, over 0.1 seconds. Thus, the maximum transient power consumption will be 185kVA.
Electrical supplies and UPS provision

4.9 In the event of an electrical power failure power during a procedure, electrical power to the system and associated support services should be maintained, in order to allow the clinician to remove any catheters or guide wires from the patient under imaging control. This can usually be undertaken using the fluoroscopic capabilities of the system and in this respect the maximum power required by the X-ray generator will be of the order of 2kW. In addition, to support this objective, power supplies will need to be maintained to the examination room monitors, imaging computer and associated control electronics. The use of UPS or emergency supplies should reflect the overall risk control strategies used in the installation of the equipment whilst in consultation with the original equipment manufacturer.

Maintenance – split cabinets

4.10 If the power control and generator cabinets are moved a relatively long distance from the actual X-ray unit due to space constraints, for safety reasons the company supplying maintenance and servicing to the X-ray systems may insist that they have two engineers on site during an inspection or repair. Generally, X-ray companies will insist on this measure when it is not possible, under any circumstances, to view the X-ray unit from the technical room. This may increase the price of any maintenance contract for the provision of routine inspections and repairs. This should be considered at early planning stages and the position of electrical cabinets identified at an early stage.

Section 5: Radionuclide and positron emission tomography imaging systems

Heating and ventilation

5.1 The expensive crystal detector within a gamma camera or PET imaging system can be damaged or cracked beyond repair if there is too rapid a rise or fall in temperature (>2°C/hour) or other environmental conditions. The environmental conditions in the examination room must be appropriately controlled to manufacturer tolerances and full air-conditioning provided. This will ensure that the equipment operates at optimum performance levels and may also reduce overall downtime. Consideration should be given to the provision of an alarm system that would be activated in the event of failure of the air-conditioning system or when the environmental conditions are outside those tolerances recommended by the manufacturer. For the majority of detectors, the temperature should remain between 20 and 22°C with a non-condensing humidity of between 40 and 60%. These figures will vary between manufacturers and should be checked carefully before installation. The doors to the gamma camera room should remain closed for as much time as possible and be equipped with access to controlled locks or systems to prevent unauthorised out-of-hours access.
5.2 It is essential not to have windows that open directly to the inside or outside of the examination room. If a window already exists, it must be doubled glazed to prevent temperature fluctuations and securely fixed to prevent unauthorised opening. Curtains or venetian blinds must be used on any window frame, as patients are required to partially undress and sit upright on the exercise machine for some studies. Under no circumstances should direct sunlight be allowed to fall on to the gamma camera. If a window is included in the design, there are also issues concerning radiation protection and limiting radiation exposures in adjacent spaces.

5.3 If radionuclide imaging examination procedures are to include the use of inhaled aerosols labelled with Technetium, separate ceiling-mounted air extraction facilities, discharging to the open atmosphere, should be provided. The location of the discharge duct should be reviewed with the RPA and subject to COSHH assessment. This extract is required to minimise the contamination risks within the examination room, in particular the risk of contaminating the face of the gamma camera, since this may have a direct impact on clinical image quality. If a radioactive gas, such as Krypton, is used as an alternative to aerosols, it is not usually necessary to make provision for extract ventilation, as this radioactive substance has a very short half-life of approximately 10 seconds.

5.4 The air-conditioning system needs to supplement the air flow with a fractional intake of filtered air from outside, in order to clear the stale air and odour originating from patients or from chemicals used for cleaning and disinfecting following the investigation on an MRSA (+ve) patient. The air in the room must be dust-free for protection of the camera mechanics and computer hard disks.

Electrical supply requirements

5.5 There must be a dedicated (clean) supply direct from the hospital’s main incoming distribution panel, with earth reference terminal. The electrical supply to the equipment should not be shared on ring mains that generate transient high sudden loads (for example X-ray units, or motors to the lift, etc) as this may cause a failure of the equipment, unreliability or drop in the performance of the imaging system.

5.6 The specific power required by each camera will depend on the camera. This can be a 30A dedicated single-phase 240V mains supply or a three-phase 30A (total) supply. It is essential to meet manufacturer specifications in terms of tolerance values for frequency and power.

5.7 Isolating switches to these cameras must be within the camera room itself, for safety and for access by the service engineer.

5.8 Each camera room should have adequate 13A sockets for PCs, monitors, and physiological measuring devices. A minimum of five double 13A sockets located at various positions in the camera room are required. These should be off a separate mains ring, not from the supply to the imaging system or those used to power the X-ray systems as stated above.
5.9 Sockets must be readily accessible for easy connection to the monitoring equipment needed by patients with critical care requirements. They may also be needed for portable equipment such as the Technegas generator or engineering test equipment.

5.10 There is a case for some of these sockets to be of the suspended type in the vicinity of the patient couch, to avoid the risk of accidents caused by tripping over mains cables trailing on the floor.

5.11 A common earth (with a single earth reference terminal) is essential for all mains supplies in each camera room, to avoid electrical shocks between equipment fed from different mains outlets.

Fixtures and fittings

5.12 The fixtures, fittings and overall finish in radionuclide and PET imaging suites are described in the main text.

Special drainage requirements

5.13 Consideration should be given to shielding the trap from any sink that has been designated for the disposal of radioactive waste within a radionuclide imaging suite. Particular consideration should be paid to the disposal sinks in the radio-pharmacy and the injection room. In these cases, lead sheets could be laminated around conventional plastic fittings.

5.14 For all sinks designated for the disposal of radioactive substances it is advised that ‘running traps’ are utilised instead of the bottle traps normally provided.

5.15 The drainage from designated patient WCs and sinks etc should be separated from other sinks to minimise back-flow to other drains caused by blockages. Waste will also be radioactive and drains should also be designated and labelled accordingly.

5.16 Plastic pipes themselves will become radioactive waste if continually exposed to radioactive substances, therefore other non-absorbent materials should be used until the waste pipe reaches the main sewer or where there is sufficient dilution of the radioactive waste. This should be determined by a suitably qualified RPA.

5.17 If possible, drainage systems from disposal sinks and WCs should allow for maximum dilution as quickly as possible. They must be made of porcelain instead of stainless steel, as this material absorbs some radioactive species of isotopes that may be used in radionuclide imaging investigations.

5.18 All designated drain runs carrying radioactive waste should be labelled appropriately at all access points, up to, either the perimeter of the hospital site, where it enters the main sewer or the point of sufficient dilution as determined by the RPA. The route of such drainage runs should not pass areas used by vulnerable groups of patients before the point of sufficient dilution.
5.19 The drainage from sinks or toilets should not pass close to the gamma camera, as this may cause instability of the camera during imaging or excessive noise on the images acquired.

Security

5.20 Senior radiographers/technologists working with radioactive substances are, required for safety, security and regulatory reasons, to keep accurate records of all the substances stored and used in the department, or entering and leaving the department. Radioactive sources have to be stored in secure environments. Routes for the delivery of radioactive substances should also be identified to avoid sources being accessed by unauthorised persons.

Section 6: Ultrasound systems

Electrical supplies

6.1 Most ultrasound systems are powered by a single-phase 240V supply and are commonly powered using standard 13A sockets. The exact electrical installation requirements should be checked with the original equipment manufacturer before procurement and delivery of the equipment, in order that changes to the installation can be undertaken, if required.

6.2 A special challenge exists for the provision of clean electrical supplies and earth to ultrasound units for the following reasons:

- the majority of imaging transducers supplied with the base unit will use the earth as a reference value when being used for imaging purposes. Any contamination of the earth may cause the ultrasound equipment to become unreliable or cause degradation in diagnostic imaging performance. For example, ultrasound units may be susceptible to spikes and surges on the earth circuit that may be created when the energy from uncompleted X-ray fluorographic exposures is 'dumped' to a common earth circuit. The earth circuit for ultrasound units should be separated from those provided for X-ray units, so each ultrasound room should be fitted with a common earth reference terminal as specified in TRS 89.

 All power outlets or sockets in the ultrasound room should be connected to this common earth, to minimise the risks of electrical potentials developing between different items of equipment attached to the patient;

- as for radionuclide imaging systems, the electrical supplies to the ultrasound unit should be provided using a different supply from the transformer to items of equipment that may generate transient high loads, as this may cause failure of the equipment or unreliability. A single uninterruptible power supply may be installed within a conveniently located and well ventilated electrical cupboard or riser, to possibly serve all relevant equipment, including computers and ultrasound units. Alternatively, separate units could be provided for individual ultrasound units. Dedicated
outlets for use with ultrasound machines should be labelled appropriately throughout the ultrasound cluster of units.

6.3 The above may be considered within a wider risk control strategy to provide either a continuous or core-hours-only ultrasound imaging service.

Heating and ventilation

6.4 See paragraphs 5.1 to 5.4 of this appendix.

Lighting

6.5 See paragraphs 3.5 to 3.7 of this appendix.

Emergency electrical supplies

6.6 The requirement to maintain a continuous imaging service during a power failure will depend on local circumstances and the reliance on ultrasound to provide a modern diagnostic imaging service. The provision of UPS devices may ensure that the units will probably not fail during the transient phase before any emergency generator is brought into service.

6.7 Where an ultrasound unit is used to undertake interventional procedures, the power to the unit will need to be maintained to allow the clinician to complete the procedure or bring it to a satisfactory conclusion without subjecting the patient to undue risk.

Section 7: Computed tomography scanners

Heating and ventilation

7.1 The general heating requirement for a CT suite will be as for any area occupied by patients in examination gowns rather than outside clothing.

7.2 A conveniently-sited manual override or time restricted switch should be provided so that a local heating circuit can be activated promptly in the event that the CT suite is used at night or over the weekend.

7.3 All parts of the CT suite will require mechanical ventilation. Particular care is needed for the CT scan room itself and the associated control room. In these areas, the system must provide temperature and humidity control that meets the specific environmental needs specified by the manufacturer of the CT system. In general terms, this will be 18–24°C with noncondensing humidity control normally in the range 30–60%. The heat yield in the imaging room itself will be typically 5–15kW depending on the number of persons present during an interventional procedure, for example, and the use of multi-detector scanners.

7.4 In dedicated imaging CT scanning rooms, thought may be given to the possibility of a switchable medium rate air change (10 air changes per hour)
system, which will permit the clearance of odours to better accommodate patient comfort when fungating tumours are examined.

Electrical services

7.5 Between the control workstation and the CT scanner there will be a requirement for significant data, control and electrical connections. A facility needs to be included when designing these suites in order to connect these devices.

Lighting

7.6 All light services should have suitable colour rendering or temperature so as to make them usable for clinical applications, particularly where anaesthetics are in use.

7.7 Lighting within the CT scanner room should be multi-switched, by the use of a dimmer device, to give variable levels of illumination for patient comfort and to permit servicing of the equipment where high light levels will be needed.

7.8 Where interventional uses are contemplated, the provision of a minor procedures lamp will be necessary. Ceiling-mounted lamps are frequently considered to be more suitable and avoid taking up valuable floor space.

7.9 General lighting within the control room and, possibly, the laser-imaging room, reception office, reporting room and management office should be in accordance with current CIBSE guidance for use with display systems. It is important for the control room to have variable light levels, again with multi-switching.

Power supply for CT scanners

7.10 Electrical supply quality is a critical consideration for quality control and reliability in CT scanning. The monitoring of power supply sources should always be undertaken when the installation of CT equipment is contemplated. Whilst the majority of equipment will work well at the levels determined in the power supply regulations (see Appendix 4), some manufacturers will make supplementary stipulations within their site planning guides or detailed technical specifications. The use of power regulators, power filters and isolating transformers may be necessary in individual instances.

7.11 CT scanners may not require an additional technical or machine room which are required for MRI and some X-ray fluorography systems. The ancillary electronics or power distribution unit (PDU) for the majority of new CT scanners may be contained in a box that is only 1–2m³. This can usually be installed in the CT examination room.

7.12 This will not apply for CT scanners procured under second hand replacement programmes where there may be a requirement to install a number of ancillary items of equipment in a separate room.
7.13 Input impedance values are critical and will be specified by the manufacturer in installation manuals. All systems will require three-phase power supply with neutral and earth delivered on a five wire strategy complying with the requirements of BS 7671:2001 the IEE Wiring Regulations 16th Edition. Individual power demands vary with machine design but will be up to a maximum of 100kW when operational, with average loads of 30kW.

7.14 Many modern systems may utilise uninterruptible power supplies in order to maintain the continuous operation for data protection on the computer systems incorporated into CT machines. The supplier or manufacture must be consulted on the circuitry options, which can be employed for UPS applications.

7.15 In cases where power supplies cause excessive electrical interference that affect the operation of the equipment, power conditioning devices can be installed. These devices can vary in size and installation requirements.

Powered imaging contrast injector

7.16 A powered contrast injector will almost certainly be required within the CT examination room for the remote administration of contrast media by radiographers/technologists from the control room. The electrical power supply may be directly via the power distribution unit (see above) and controlled from the operator’s console. These devices are of either floor or ceiling-mounted articulating arm design and may need to be positioned either side of the patient when administering contrast media.

Structural radiation protection

7.17 In order to acquire a CT image, a much higher X-ray dose is used than that in general X-ray imaging. The X-ray energies used are also much higher than those used in fluoroscopy or general X-ray. As a result, the level of structural shielding required is much higher in a CT examination room than in other types of diagnostic imaging rooms. The installation of multi-detector units, spiral acquisition techniques and use of extended working hours may necessitate a further increase in the shielding required by some departments. As a guide, the shielding may consist of between 3 and 4mm of lead or equivalent thickness in other types of material when measured at energies of about 130kV.

Vibration problems

7.18 The image quality of the scans can be reduced if the gantry is exposed to levels of vibration that are beyond the tolerance levels stated by the manufacturers. Ideally, the CT scanner should be located on the ground floor of a hospital building.
Section 8: Magnetic resonance imaging scanners

8.1 There is a broad range of specific engineering issues that arise with the proper implementation of MRI scanners for imaging services applications, and indeed, some general issues as well. The key points are described below.

Heating and ventilation

8.2 The general heating requirement for an MRI suite will be as for any area occupied by patients in bed clothes or examination gowns rather than outside clothing.

8.3 A conveniently sited manual override or time restricted switch should be provided, so that the local heating circuit can be activated promptly in the event that the MRI suite is used at night or over the weekend. It is likely that such use will be associated with the need to support the urgent treatment of a patient.

8.4 All parts of the MRI suite will require mechanical ventilation. Particular care is needed for the MRI scan room itself and the associated control room. In these areas, the system must provide temperature and humidity control which meets the specific environmental needs specified by the manufacturer of the MRI system. In general terms this will be 18–24°C with noncondensing humidity control normally in the range 30–60%. Similar restrictions will apply in the auxiliary technical room, though the heat yield in that room will be higher than elsewhere in the suite and should be anticipated as being between 10–20kW. The heat yield in the imaging room itself will be typically 5–10kW. In dedicated Imaging MRI scanning rooms, thought may be given to the possibility of a switchable medium rate air change (6 to 12 air changes per hour) system, which will permit the clearance of odours so as to better accommodate patient comfort when fungating tumours are examined.

8.5 Whilst the Dewar containers used for the cryogenic gases are of the highest quality, there is nevertheless a possibility of some leakage. Leakage of helium or, in exceptional cases with old equipment, nitrogen, may lead to a build-up in the atmosphere within the scanning room itself, which in turn may tend to exclude the oxygen and carbon dioxide essential to normal breathing. Accordingly an oxygen monitoring device, which gives both a visual and sound alarm within the control room should leakage depress oxygen concentration, must be included in the MRI scan room. It is recommended that this system be independent of any similar system already incorporated into the MRI machine itself.

8.6 The possibility of a planned or emergency quench has been discussed earlier in this section. Such a contingency requires a separate low resistance air or gas duct, venting to the external atmosphere at a safe discharge point, such that the gases released would be unlikely to re-enter the scanning building or any adjacent built environment either directly or through some form of ducting. The design of the duct varies slightly with the design of the MRI system, but all will require that the structure ensures that entry of water into the duct is precluded.
Water contamination can lead to a build up of debris or icing during the winter months, inhibiting the proper operation of the duct.

Chilled water supply and cold-head requirement

8.7 The MRI equipment may require a closed circuit chilled water supply for the cooling of gradient coils associated with the scanner gantry. In addition, all MRI systems, excluding those that are non-cryogenic, will require a cold head or, alternatively, a heat pump intended to minimise helium loss and assist in gas recovery. These devices require the location of a compressor/pump in an area where the noise of its operation can be reasonably insulated from adjacent occupied areas and waste heat can be readily dissipated.

8.8 The compressor may be chilled by a closed water supply, which should have an automatic switch-over to mains water in the event of failure of the chiller unit. These units have large space requirements and may need space in a plant room.

8.9 For resistive or electro-magnetic systems, a chilled water supply for general cooling will be needed. The volumes required are large and the dissipation ratings may be as high as 40kW. The specialist advice of the MRI system manufacturer will be needed and should be obtained at an early stage in design of the suite.

Lighting

8.10 All light services should have suitable colour rendering or temperature so as to make them usable for clinical applications, particularly where anaesthetics are in use.

8.11 AC light sources may also upset the image quality produced by some types of MRI scanners. As there is also a significant risk of RF interference and a risk of problems from the standing magnetic field, the use of DC power supply lighting is to be preferred over conventional AC systems. Care should be taken to ensure that the light fittings and the sources are MRI compatible.

8.12 Lighting within the MRI scanner room should be multi-switch, to give variable levels of illumination for patient comfort, and to permit servicing of the equipment, where high light levels will be needed.

8.13 Where interventional uses are contemplated, the provision of a minor procedures lamp will be necessary. Again, this will need to be MRI-compatible and will ordinarily require a DC power supply. Ceiling-mounted lamps are frequently considered to be more usable and avoid taking up valuable floor space.

8.14 General lighting within the control room, technical equipment room, laser-imaging room, reception office, reporting room and management office should be in accordance with LG3, the current CIBSE guidance for use with display systems. It is important that the control room has variable light levels again with multi-switching.
Power supply for MRI scanners

8.15 Electrical supply quality is a critical consideration for quality control and reliability in MRI scanning. The monitoring of existing power supply sources should always be undertaken when the installation of MRI equipment is contemplated. Whilst the majority of equipment will work well at the levels determined in the power supply regulations (see Appendix 4), some manufacturers will make supplementary stipulations within their site planning guides or detailed technical specifications. The use of power regulators, power filters and isolating transformers may be necessary in individual instances.

8.16 Input impedance values are critical and will be specified by the manufacturer in installation manuals. All systems will require three-phase power supply with neutral and earth delivered on a five wire strategy complying with the requirements of BS 7671:2001 the IEE Wiring Regulations, 16th Edition. Individual power demands vary markedly with machine design, but will be in the range 20–60kW when operational, with stand-by loads between 5 and 15kW. In the case of cryogenic units the start up phase will require higher currents and special engineering requirements apply.

8.17 Many modern systems utilise uninterruptible power supplies in order to maintain the continuous operation of cold heads and also for data protection on the computer systems incorporated into MRI machines. The supplier or manufacturer must be consulted on the circuitry options, which can be employed for UPS applications.

Specialised machine wiring

8.18 Normally, the services contractor will take responsibility for the power supply wiring and associated earth up to an isolator cabinet(s), usually equipped with a remote isolating switch. Beyond this point, specialised wiring will be used for the internal power supply, data lines, etc. of the MRI systems. This wiring will be supplied by the MRI manufacturer/supplier and is usually installed by that company. Control and data trunking should be provided between the control room, laser imaging room and the reporting room suitable for data distribution.

Provision of an earth circuit

8.19 All aspects of the electrical installation of the scanner should be in compliance with the current edition of the IEE Electrical Wiring Regulations. In addition, the MDA document TRS 89 specifies the need for an earth reference terminal to be located adjacent to the examination room.

8.20 Particular difficulties arise with MRI, since the equipment has considerable sensitivity to any contamination of the neutral or earth lines. Where the earth circuit also supplies devices such as a linear accelerator and X-ray sets, the contamination of the earth circuit is likely. For this reason, consideration should be given to the provision of a low impedance direct earth circuit, normally connected to an earth mat and spike arrangement local to the MRI itself. In this instance, it may be possible to ensure that the impedance on the entire earth
path, that is from machine to earth origin, is below 0.5W (ohms) and ideally approaches 0.1W.

Fire safety

8.21 General advice on fire safety including guidance on additional fire precautions required in MRI suites is contained in HTM 83. It is essential that the scanning room itself and any other area subject to a magnetic field intensity greater than 0.5mT should not be used as a fire escape route (see also paragraph 14.36).

Safety and environmental needs

8.22 MRI systems pose a number of special safety and environmental considerations which are further exacerbated when these machines are routinely used for imaging care or where minimal invasive therapy is involved. These specific hazards are dealt with briefly below:

Use of cryogenic gases

8.23 These will be delivered to site, by one of a small number of UK-based suppliers, in a large volume duo, typically 500 litres, and taken to the MRI room for delivery to the MRI gantry-mounted duo itself, through a cryogenic transfer valve. The delivery point and route of access though the hospital building to the MRI scanning room should be considered carefully in safety terms. Whilst accidents with cryogenic material have been rare in UK hospitals, the consequences of leakage are significant in safety terms. It is considered advantageous to avoid routes that go through highly occupied areas or where floor, ceiling and ventilation are poor.

8.24 The MRI system itself is likely to be delivered in a partly pre-cooled state, so it will contain several hundred litres of cryogenic helium. Accordingly, precautions in terms of leakage of this material apply equally to the delivery of the system.

8.25 The stray magnetic field arising from the MRI system has been discussed in earlier parts of this section. Essentially, however, it offers two challenges:

- according to MDA guidance, the fringe field above 5 gauss or 0.5mT may give rise to disruption of function in cardiac pacemakers, causing a hazard to the health of patients. Some independent authors suggest that mode switching can occur in such pacemakers at 3 gauss or 0.3mT;
- much electronic equipment, particularly that which uses an electron beam like X-ray tubes, image intensifiers and video display monitors, will have varying degrees of sensitivity to the magnetic field. The most extreme case is the X-ray image intensifier, where normal operation will only be obtained at values similar to the earth’s magnetic field intensity.

Fringe fields

8.26 Fringe fields are dealt with by the combination of inherent design within the MRI itself, so called active shielding, and the use of one or another type of passive shielding. Active shielding involves the use of an electron magnet, which
generates fields opposing the fringe field generated by the principal magnets. This has a cancelling effect and is often the cheapest and easiest way of constraining fringe fields. Passive shielding depends on introducing large masses and, in some cases, areas of steel or other ferromagnetic materials that in effect capture the magnetic field and concentrate it away from areas requiring protection. Thicknesses between 3 and 10mm will be required and, where the areas to be protected are large, of considerable weight and, thus, structural consequences may arise. However, for many modern MRI scanners, particularly those in operations at 1T or below, the use of shielding is increasingly uncommon, since the inherent characteristics of the magnet are reasonable satisfactory with respect to fringe fields.

8.27 All current UK MRI manufacturers and suppliers should be able to provide idealised fringe maps that do not take into account any shielding or ferromagnetic structures inherent in the building structure.

Radio frequency radiation

8.28 A radio frequency cage, essentially a Faraday cage, will always be needed for MRI installation without exception. As mentioned previously, all mechanical and electrical services entering the MRI scanning room will generally be routed through specifically designed access points so that the RF shielding of the room is not compromised. In some instances, the precise arrangement will be specific to the MRI system chosen or will be constrained by other elements of the project. For air-conditioning, some designs utilise air outlet grills above the perforated RF cage structure, so that the airflow, rather than the air-conditioning system, penetrates the cage.

8.29 It is recommended that all engineering services be grouped, as far as is practical, to facilitate penetration via a wave guide through the RF shielding cage. This will lead to the option of constructing a services cupboard, which will contain the wiring and pipe work incorporated to the RF access pad/wave guide. Such a structure will be duplicated on both sides of the RF cage itself. This arrangement is thought to favour efficiency in periodic maintenance and inspection of the services. In considering wave guides and ports within such pads, provision should be made to facilitate later expansion of the facility, in the form of a small number of extra access ports.

8.30 Broadly, within the MRI scanning room itself, all engineering services and components, including some sundry items such as supports, must be made of non-ferromagnetic material. Though there is an ability to tolerate small mass items, they can, nevertheless, become a difficulty during maintenance if they are dropped or dislodged. It is recommended that ductwork is constructed of aluminium or plastic materials and that pipe work is copper or plastic as appropriate. The RF cage itself will be constructed from aluminium or copper sheets supported by a frame.

8.31 Special problems arise with water leakage in MRI facilities. For this reason some scanning rooms, as distinct from suites, do not contain wash-hand basins and sinks. However, with the move toward interventional work being conducted in MRI facilities, the need for sinks and wash hand basins has risen...
considerably. Where they are installed, it is important that precautions, including secondary containment, are applied for pipe work and the installed facilities themselves. It is also important that inspection hatches are provided so that any parts of the plumbing installation can be readily accessed for maintenance. As high-powered devices are in use, good separation between water supply and electrical conductors is also necessary. Leakage can also be a hazard in terms of potential corrosion to the RF cage, something that must be expressly avoided.

8.32 In summary, an RF or Faraday cage, ordinarily constructed in aluminium or copper utilising sheet or gauze mesh, will be applied about the MRI scanning room itself. In some instances, particularly where there is equipment above, the cage may need to enclose both the ceiling and floor. Specialist advice from a RPA qualified in magnetic resonance imaging should be sought in respect of each installation. This advisor will also be able to assist to some degree, in terms of safety and clinical effectiveness, with magnetic shielding and suite design.

Commissioning exercise

8.33 The commissioning of an MRI scanner in terms of an electrical test, approval of the building and its fittings, does not differ significantly from similar installations of specialist equipment. However, a number of special issues do arise:

- the monitoring of fringe field. This exercise, frequently conducted by either the manufacturer or by the RPA, involves the use of a hand held magnetometer to measure the field at the limit of the area in which access by persons can be controlled. This area, referred to as a controlled area, may exceed the 0.5mT limit described above. Outside this boundary the magnetic field must be constrained below this level. A strategy involving inner and outer controlled areas is common and the protection advisor will give a limitation for the outer area. A figure of 0.3mT is commonly used;

- in some instances, RF surveys are used to check the integrity of protective cages. This work must be done prior to the installation of the magnet itself, since the RF monitoring equipment and magnet are largely incompatible;

- special tests on the integrity of services and supplies as they pass through RF insulating pads and wave guides are needed.

8.34 Ordinarily, the EBME department of a Health Board or other suitable consulting engineers will deal with this, so as to ensure some independence from those actually carrying out the original work.

Decommissioning

8.35 The majority of issues are similar to those for the decommissioning of any major item of plant and machinery. As soon as the magnet is quenched, the magnetic hazard will be rapidly dissipated so that it will be possible to remove used equipment without fear from stray magnetic fields or other magnetic effects. Correct and orderly quenching prior to decommissioning is essential because of
hazards from cryogenic gases themselves and from the very large current that flows within the super-conducting structure of the magnet.

8.36 The magnet coils contain specialised materials with significant re-cycling value. It is appropriate that a specialist contractor handle this issue, as it will have a particular bearing on cost and environmental protection. However, modern magnet designs can often permit the use of a core magnet with two or even three evolutions of imaging systems that are re-built around it, at intervals of typically five to seven years.

Section 9: Specialist engineering requirements in X-ray film processing

Chemical mixers

9.1 A filtered and de-ionised water supply is needed for the chemical mixers associated with automatic film processors and wet laser imagers. The filtering equipment is usually provided and maintained by the processor supplier as part of the equipment purchase and is typically wall-mounted within the processing area or dark room adjacent to the mixer.

Processing area

9.2 Direct extract ventilation is required from each automatic film-processing unit, typically by 100mm plastic extract ductwork. Equipment suppliers should be consulted regarding the requirements for electrical power supply to the processing units, the chemical mixers, and to silver recovery units. As an indication only, the automatic daylight processors are likely to require a 30A power supply. Other items of equipment are likely to require 13A power supplies.

9.3 In addition to direct extract ventilation from the processors, general room supply and extract ventilation will be required to provide between five and ten air changes per hour, depending on film throughput and room size. If a silver recovery unit is located in the processing room, consideration should be given in the detailed design of the ventilation system to possible accumulation of heavier than air gases e.g. the provision of low-level extract grills may be necessary.

9.4 General room lighting should allow for the use of wall-mounted X-ray viewing panels and of computer screens.

9.5 Drainage provision will be required to serve the automatic processing units. This will typically be 100mm plastic drainage pipe set into the floor, possibly in access ducting. The fall of this drainage should be sufficient to prevent the accumulation of sediment to the drainage ducts. Where a processor is not installed against a wall, service channels will need to be provided in the floor construction for piped connections to the chemical mixer.
9.6 Risk factors associated with the disposal of chemical effluent and its affect on the environment can be calculated using appropriate mathematical models. This should be undertaken before the installation or increase of film processing equipment in the department. This calculation will determine limits for the disposal of chemicals to the sewer and will determine which chemicals will require bulk storage and specialist disposal.

Silver recovery

9.7 At the time of writing, ‘screen’ type double emulsion medical imaging films comprise the majority of imaging film used in the NHSS. These emulsions can contain between 5 and 10g per sq metre of recoverable metallic silver, depending on their manufacturer. Single emulsion film for mammography contains between 2 and 6g per sq metre of recoverable metallic silver, depending on the manufacturer.

9.8 As digital radiography and other similar advancements and small-film usage techniques come into general use, the percentage use of ‘screen’ film types will decrease.

9.9 Approximately one third of this metallic silver stays in the emulsion after processing to form the diagnostic image. A small proportion of the residue stays in the developer and the remainder is removed by the fixing solution. Most of this silver is in solution or suspension in the fixing bath and can be recovered by electrolytic means as almost pure silver in recovery systems in the hospital or elsewhere.

9.10 The silver remaining as the film’s image can be recovered only when the film itself is removed from the archive store and sent to a commercial contractor with specialised recovery equipment.

9.11 It is essential to operate an efficiently managed silver recovery system. While silver recovery can provide a source of income to a hospital, the decreasing value and amount of silver used in current film emulsions, and the increasing cost of assay, commercial recovery and marketing of the metallic residues, can cause a reduction in this revenue. It is customary to use an external contractor under a lease agreement for most stages of silver recovery.

9.12 The most common method used for silver recovery is a high current density electrolytic method. Piped connections to the processors, together with local power supplies are necessary for the installation of the unit. It may be possible to recirculate fixer solution to the film processor, although manufacturers should be consulted.

9.13 In the interest of health and safety, silver recovery units should be located where staff will not be exposed to noxious fumes. Silver recovery units should not be sited in darkrooms. They may be sited in daylight film processing areas if the ventilation of these areas is provided in accordance with the guidance in this publication.
9.14 Where suitable commercial services are available, consideration should also be given to the collection and sale of used fixer solution in bulk when the storage of the used fixer solution may be located outside the department, thus eliminating any processing area leakage of fumes from this source. The re-use of fixer is, of course, not compatible with this procedure.

9.15 If the silver recovery process is to be undertaken locally at the NHSS Health Board, safe secure storage of the silver recovered should be provided within a darkroom or other secure area.

Disposal of chemically contaminated effluent

9.16 At an appropriate early stage in the design process, the drainage system designer should discuss and verify with the SEPA the project proposals for the collection and discharge of chemical contaminated effluents. The SEPA may impose restrictions on the quantity and rate of discharge of such effluents into public sewers.

9.17 It must be sealed throughout its run to the main sewer and its route should be chosen with regard to the areas likely to be affected if leaks develop. It is recommended that drainage for this purpose should not be into a pumped system.
Appendix 3

Glossary of terms, abbreviations and further information on clinical techniques

Glossary

A&E: Accident & Emergency

Actinic marking: The process of permanent identification of an X-ray film (with required details such as a patient’s name, date of examination, etc.) by a photographic method using light or X-rays. The use of light is by far the more common method and various systems exist for marking a portion of the film either within the cassette or outside it.

Anti-scatter grid: Each ‘grid’ is made up of very thin, evenly spaced lead strips separated by strips of plastic or other radiolucent material, either parallel or focused for a particular exposure distance. Placed between the patient and the film or image intensifier, grids allow the primary beam to pass easily but markedly reduce the scattered radiation, to improve image quality. The ‘grids’ may be incorporated in the apparatus (see bucky diaphragm) or they may be portable. The largest ‘grids’ are typically about 43cm square and weigh just over a kilogram.

ARSAC – Administration of Radioactive Substances Committee: Each radiologist practising radionuclide imaging must have an ARSAC certificate or licence, which clearly details the examinations that can be undertaken and the doses administered. The ARSAC committee issues the licences. Certificates must be updated on a five-yearly basis.

Aseptic room: A room with a clean area designed, constructed, serviced and used with the intention of preventing microbial contamination of the product.

Aseptic: This refers to procedures designed to exclude or minimise contamination.

BIR – The British Institute of Radiology: Information on the British Institute of Radiology can be found at www.bir.org.uk
BMUS – The British Medical Ultrasound Society

Information of the BMUS can be found at www.bmus.org

BNMS – The British Nuclear Medicine Society

Information on the BNMS can be found at www.bnms.org.uk

Bucky (Potter Bucky) diaphragm

A device whereby an anti-scatter grid is caused to move or oscillate during the exposure. This allows the anti-scatter function to be performed without an image of the grid being visible on the film. The term is usually abbreviated to ‘bucky’ and is used to refer not to the moving grid itself but to the assembly comprising a frame or holder containing the grid and having provision for the insertion of a cassette.

Cassettes

Lightproof containers in which X-ray films or Computed Radiography plates are placed prior to exposure. In Computed Radiography, the plates remain with the cassette after the data has been captured using the reader.

Chest stand

Apparatus, designed to hold cassettes in the vertical plane and normally floor-standing with either ceiling or wall support, used for taking chest X-rays. This device can also incorporate a bucky diaphragm or bucky as described above.

Cold heads

This is a term commonly used when referring to the refrigeration or cryogenic gas recovery system associated with MRI magnets.

Computed Radiography (CR)

A digital process for acquiring plain film general X-ray images similar in a number of respects to conventional acquisition techniques.

Computed Tomography (CT)

CT scanning is a form of cross-sectional imaging that combines X-ray images from a number of different projections to form a single or multiply images. Instead of using film to detect the X-ray beam, a bank of solid state detectors is used to acquire the data from the different projections.

Controlled area

See Appendix 2: Engineering requirements.

CoR – College of Radiographers

Further information on the College or Society of Radiographers can be found at www.sor.org
Cross talk

In radionuclide imaging, where two gamma cameras are placed near each other, with little or no shielding between them, there is a risk that gamma rays from patients or sources used in QA procedures seen by one gamma camera may also be seen by the other close by. This can be minimised by careful orientation of the cameras relative to one another and by maximising the distance between them.

CRT or CRO – Cathode Ray Tube or Oscilloscope

A beam of electrons is focused onto a fluorescent screen to give a visible spot of light, within a vacuum tube. This is commonly used in computer monitors and similar devices.

Cryogens

Super cooled liquid gases at temperatures at –200°C or lower, typically liquid helium and nitrogen, used to maintain the magnet coils at super-conducting temperatures.

CT scanning

These initials stand for Computed Tomography. This technique enables detailed examination to be made of body sections. The method uses a moving X-ray tube coupled to solid state or gas detectors, which measures the absorption values of the body section under examination. Images are generated, held and manipulated by computer techniques.

Dewar

A highly specialised-engineered vacuum walled vessel designed for holding cryogenic liquids at low temperatures just above absolute zero for transportation and delivery. These vessels can be large, up to 1.5m in diameter, with associated attachments, and up to 2m high. They are moved by the use of castors attached to their base.

Diagnostic index

An index of all examinations (or of selected examinations of interest) undertaken within a radiology department, and according to the diagnosis. The filing may be according to the international index of Diagnosis or to some simplified local format. The index may be kept on computer or on cards.
The DICOM standard was developed jointly between the National Electrical Manufacturers Association (NEMA) and the American College of Radiology (ACR). The purpose of the standard is to allow images to be transferred and moved between two modalities or computer workstations supplied by different vendors. DICOM provides a standard format for the transfer of images and all the original equipment manufacturers have signed up to this format to a greater or lesser degree. Laser printing is part of the DICOM standard data format, which allows images from a modality to be printed onto a laser printer from another manufacturer.

By digitising X-ray images and using computer techniques to subtract one image from another, it is possible to enhance the demonstration of blood vessels by removing background shadows. The injection may be intra-arterial or intravenous. It usually requires complex apparatus and powerful computer processing facilities.

This is a direct method for acquiring general radiographic images directly without an intermediate processing cycle such as that used in CR or conventional techniques. The processing electronics are stored directly in the bucky and the X-rays transmitted through the patient’s body are converted directly to an X-ray image. For a fuller description, see main text.

In this case, the eluate is Technetium 99m-pertechnetate and is captured by flushing the column of Molybdenum/Technetium 99m in a radionuclide generator with saline solution. The saline chemically bonds with the technetium to form Technetium 99m-pertechnetate solution.

The name given to the ‘bed’ on which many X-ray examination are under taken. They may be simple fixed tables, or have fixed feet but ‘floating’ tops, which move freely in all horizontal axes. They may elevate, or tilt in one direction only. More sophisticated examples tilt up to 90° in both directions and have tops that have independent extensive movement both longitudinally and laterally.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferromagnetic substances</td>
<td>Substances with large positive magnetic susceptibility that become magnetised within a magnetic field and remain magnetised after being removed from the field. They cause large magnetic field distortions, signal loss and can become a projectile when near a magnet.</td>
</tr>
<tr>
<td>Filmless department or Picture Archive and Communication System (PACS)</td>
<td>A Diagnostic Imaging and Interventional Radiology department in which the majority of images and data are stored, accessed and manipulated in digital form, by the use of computer archives and sophisticated digital networks. Picture Archive and Communications Systems are required to store and communicate the images to different parts of the department. In order to achieve the greatest benefit, the network should be integrated with the Hospital Information or Patient Administration Systems and the Radiology Information System.</td>
</tr>
<tr>
<td>French</td>
<td>This term is often used to describe the internal diameter of catheters and needles used in some diagnostic imaging and interventional radiological procedures. One French is equivalent to approximately 1.4mm.</td>
</tr>
<tr>
<td>Gadolinium-DTPA</td>
<td>Contrast media that is commonly used in a number of MRI investigations</td>
</tr>
<tr>
<td>Gauss (G)</td>
<td>A unit of magnetic induction, where 1 gauss = 0.1mT. The Earth’s magnetic field strength is approximately 0.6g.</td>
</tr>
<tr>
<td>High intensity film viewer</td>
<td>Also referred to as ‘bright-light’; this provides a localised source of high-level illumination. It can either be incorporated within a standard film viewer or be provided separately.</td>
</tr>
<tr>
<td>High voltage (HV) cables</td>
<td>High voltage (HV) cables convey the electrical energy from the transformer to the X-ray tube. Cables to the under-couch tube (where one is present) can be mainly carried in under-floor ducting. Those serving the over-couch tube are suspended from ceiling mountings.</td>
</tr>
<tr>
<td>Hospital Information System (HIS)</td>
<td>This is sometimes called Patient Administration System (PAS) and is used by the hospital or Health Board to store patient records and details.</td>
</tr>
<tr>
<td>ICRP – the International Commission of Radiation Protection</td>
<td>Information on the ICRP can be found at www.icrp.org</td>
</tr>
</tbody>
</table>
Intensifying screens

These are used singly or in pairs and consist of a fine layer of salts (usually ‘rare-earth’) mounted on a thin card or plastic base. These salts fluoresce when excited by irradiation. The screens are fitted inside a lightproof cassette. The X-ray film is placed between them and thus the effect of the radiation on the film is intensified, reducing the exposure required to achieve a diagnostic image.

Interventional radiology procedures

A general term used to describe procedures involving the insertion of needles, probes, catheters, etc into patients with or without the injection of a contrast medium. The imaging modality is used to guide the procedure or placement of a catheter into the anatomy of the patient at the required position.

Intravenous urogram (IVU)

This is an examination of a patient’s renal system and may be used to look for kidney stones or as an adjunct to some radionuclide imaging studies. After a preliminary film has been taken, a contrast medium is injected (usually into the patient’s arm) and this enables the kidneys, ureters and bladder to be visualised on X-ray films. The examination involves a series of films being taken by a radiographer/technologist at timed intervals. X-ray tomography is often involved in this procedure. The total examination normally takes about an hour but can vary considerably from patient to patient.

Ionising radiation

Ionising radiation is the part of the electromagnetic spectrum that is characterised by its property of ionising matter. Examples are X-rays, gamma rays, electrons and protons, all of which have applications in medicine.

IPEM – Institute of Physics and Engineers in Medicine

Information on the Institute of Physics and Engineers in Medicine together with a full listing of publications can be found at www.ipem.org.uk

Lead equivalent (LE)

The lead equivalent of a material is the thickness of lead that would absorb radiation to the same extent as the actual thickness of the material concerned, under specified conditions of irradiation. Lead equivalent is expressed in mm and is used as a measure of the protective properties of shielding materials.
Lead glass (protective glass)

Glass that contains a high proportion of lead compounds and thus has a relatively high absorption of X-rays (that is, a relatively high lead equivalent for a given thickness), although transparent to light. It is commonly used in the upper portion of radiation shields forming part of the control area of a general X-ray room.

Lead rubber

Rubber that contains a high proportion of lead compounds and is used as flexible protective material. This material is used to make gloves, jackets and coats, which are worn by persons otherwise unprotected from the scattered X-rays.

Lead rubber aprons and coats

Aprons to protect the wearer against scattered radiation. They are worn when the operator needs to be outside the control cubicle when an exposure is made.

Lead rubber gloves

Gloves, made from lead rubber, which protect the operator’s hands from direct X-rays.

Lego-medical

Diagnostic imaging examinations can sometimes be used to resolve legal disputes, for example in personal injury claims.

Licensed

Possessing a licence from the licensing authority to operate as a manufacturer of pharmaceutical drugs. In addition, each individual drug used must be separately licensed. This has particular consequences in radionuclide imaging.

Light beam diaphragm

A device used to illuminate the desired area of the patient for accurate positioning prior to radiography. It incorporates a centring illuminator and a set of lead ‘leaves’, which ensure that during radiography the X-rays are confined to the illuminated area.

Magnetic resonance (MR)

The enhanced absorption of radio-frequency energy by nuclei or electrons in a static magnetic field when the energy is applied at the resonance frequency. In clinical applications, the term is assumed to represent interactions with nuclei. It is sometimes referred to as nuclear magnetic resonance (NMR). When applied to electrons, the method is called electron spin resonance (ESR) or electron paramagnetic resonance (EPR).
Magnetic resonance imaging (MRI)
Images of anatomical structures, which may be obtained by computing signals, obtained when a patient is placed in a strong magnetic field. The procedure is attractive for use in paediatrics because it involves the use of non-ionising radiation, rather than ionising radiation, thereby lowering the risks from the examination.

Magnetic shielding
Method for containing the stray (fringe) magnetic field produced by an MR system.

Mammography
Mammography is the radiographic examination of the breast. In a District General Hospital it commonly refers to procedures undertaken upon clinical request, as distinct from breast screening programmes. The imaging examination requires dedicated X-ray apparatus, film and processing equipment.

Master index
This is an index or database containing data referring to all patients examined within a diagnostic imaging and interventional radiology department. The data includes such details as the patient’s name, address, age, sex and hospital number and may in some instances be combined with the report index. The index may be kept on computer or on cards. This is now undertaken on a computer by the use of a Radiology Information System.

Metastases
These are sometimes called secondaries and describe tumour spread to another part of the anatomy or body from the primary tumour. Secondaries or metastases are commonly located in bone or lymph nodes.

MOD – Magneto-optical Disk
There are two formats of MOD currently available, from two manufacturers. They are not interchangeable, that is, a drive from one manufacturer is unable to read the disks supplied by the other.

Multi-film viewer
An apparatus comprising a number of movable, electrically or mechanically operated panels, which are capable of being placed in front of a fixed viewing box (commonly of light modules) so that multiple radiographs may be viewed sequentially.

National Cancer Registry
The National Cancer registry attempts to list all the patients suffering from cancer, year by year, together with the treatment regimes used and their overall success.
NOF – New Opportunities Fund
These are National Lottery funds that have been allocated for the capital procurement of new radiotherapy and radiology equipment for the NHS. The numbers and types of equipment to be procured have been identified in the National Plan for the NHS. The Department of Health Imaging Policy Group currently manages the fund. The first phase of equipment procurement is currently being undertaken.

NRPB – National Radiological Protection Board
Further information on the NRPB can be found at www.nrpb.org.uk

Open Magnet Systems
These types of units provide far greater access to the patient during the examination or procedure than conventional cylindrical designs with a narrow patient bore. The main magnetic field is generated by two vertically opposing magnetic poles. Some manufacturers are now marketing new open systems, employing cryogenic as opposed to resistive current technology, which have larger main magnetic fields. The systems have real advantages in imaging paediatric and claustrophobic patients and when undertaking interventional MRI procedures, when compared with other designs of MRI systems.

PA – Posterior Anterior
This describes a projection used commonly for chest X-ray imaging. The X-ray beam enters the patient’s back (posterior) and exits the front (anterior).

PACS – Picture Archive and Communication System
This is a digital method for storing and acquiring all the images generated in a diagnostic imaging and interventional radiology department and the associated network required to transmit these to different locations of a hospital and the department. The networking and data storage requirements are considerable and require large amounts of initial capital or revenue expenditure.

Passive magnetic shielding
Iron plates are applied directly to the magnet (self shielding) or are placed in strategic locations on the walls of the magnet enclosure (room shielding). The plates of iron form an integral part of the magnetic circuit.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent magnet</td>
<td>Magnet composed of large quantities of a permanent magnet material with high magnetic remanence and iron. It is used to produce field strengths typically less than 0.3 Tesla in whole body systems and higher field strengths in niche systems. Typically have a vertical static field orientation and minimal stray magnetic fields.</td>
</tr>
<tr>
<td>PET – Positron Emission Tomography</td>
<td>See main text for full description.</td>
</tr>
<tr>
<td>PFI and PPP – Private Finance Initiative and Public–Private Partnership</td>
<td>See main text.</td>
</tr>
<tr>
<td>Quality assurance phantoms</td>
<td>Test objects, which are used to evaluate the performance of diagnostic imaging equipment.</td>
</tr>
<tr>
<td>Quench</td>
<td>Sudden loss of superconductivity, typically causing rapid evaporation of cryogens. May be spontaneous, due to inadequate levels of liquid helium or caused by small faults in the installation circuitry.</td>
</tr>
<tr>
<td>Radioactive isotope</td>
<td>A species of material that is radioactive and decays to a more stable state or to another radioactive isotope by the emission of a gamma ray, beta or alpha particle, for example. These isotopes are combined with chemicals to form radiopharmaceuticals.</td>
</tr>
<tr>
<td>Radio-frequency (RF) pulse</td>
<td>Oscillating magnetic field in the range 10–100MHz, typically of relatively short duration, for example 1–10msec, produced by a RF coil. In MR imaging, magnetic gradient fields, often pulsed, are applied in order to select individual slices of tissue.</td>
</tr>
<tr>
<td>Radio-frequency (RF) shielding</td>
<td>A shield to protect MR signals and the receiver coil in an MRI scanner from contamination by extraneous signals. The extraneous signals may be generated by a wide range of sources, including TV transmitters, commercial radio stations, two-way radios, paging systems and many types of electrical equipment, especially computers. Shielding also limits the transmission of the MR RF pulses into the environment. Constructing an RF-shielded enclosure within the MRI scanner room often provides RF shielding. Various types of enclosure are available; including those made of copper or non-magnetic stainless steel.</td>
</tr>
</tbody>
</table>
Radiology Information and Management System (RIS & RMS)

This is a database that holds all the data on patients who have been examined together with the reports that have been dictated by the radiologists and subsequently reported by the supporting administrative staff. The Radiology Information System will usually be used to schedule patients for examinations following the receipt of requests. Clinicians working in the department will be able to access reports and data on patients using one of the many computer terminals located in the department. Where a hospital has procured a PACS it may be operationally advantageous if these databases are combined, to avoid patient identification problems. Where possible, Radiology Information Systems are interfaced with separate modalities to allow radiographers/technologists and other clinicians to call up patient’s details and select them from a work-list on the modality workstation console.

Radiopharmaceuticals

Medicinal products which achieve their purpose by virtue of radioactivity and may be used for both therapy and diagnosis.

RCR – Royal College of Radiologists

Information on the Royal College of Radiologists and full list of publications can be found at www.rcr.ac.uk.

Reflux

This is where fluid may flow back from one area of the body to another. The most common example is the flow of urine back to the kidney from the bladder during micturation.

Remote control fluoroscopic apparatus

This term applies to a type of fluoroscopic apparatus that can be completely operated by the radiologist from a remote console behind the protective screen. The equipment can be distinguished from conventional or universal systems in that the image intensifier sits underneath the couch with the X-ray tube above.

Report index

An index containing details of the examination request and radiologist’s report. It may, in some instances, be combined with the master index. The index may be kept on computer or on cards.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistive magnet</td>
<td>Magnet composed of current-carrying coils. It requires continuous input of electrical current and is used to produce the main magnetic field. These systems require continuous cooling by the use of chilled water supplies. This type of magnet design typically produces main field strengths of less than 0.4 Tesla. May have horizontal or vertical field orientation depending on magnet design. The design of the system may be particularly advantageous when undertaking interventional radiology procedures.</td>
</tr>
<tr>
<td>RPA – Radiation Protection Advisor</td>
<td>See main text.</td>
</tr>
<tr>
<td>RPS – Radiation Protection Supervisor</td>
<td>See main text.</td>
</tr>
<tr>
<td>RTP – Radiotherapy Treatment Planning</td>
<td>Radiotherapy treatments are planned before being undertaken and diagnostic images are used in the planning process.</td>
</tr>
<tr>
<td>Safe-lit area</td>
<td>A safe-lit area is one from which natural and artificial light can be excluded by use of light-proof doors or partitions. It has photographically ‘safe’ lights installed for use when required. This enables the area to be used for handling photographically sensitive materials in safe conditions where necessary, for example during loading/unloading of film magazines.</td>
</tr>
<tr>
<td>Scatter (scattered radiation)</td>
<td>Ionising radiation that has been deflected from its original path and is a hazard both to film quality and to personnel.</td>
</tr>
<tr>
<td>Sharps</td>
<td>Needles or other sharp objects. They should be stored in a sharps bin following use.</td>
</tr>
<tr>
<td>Skull X-ray unit</td>
<td>A type of X-ray apparatus that has been designed specifically for examinations of the cranium, in particular the skull. It differs from general X-ray equipment in that it provides much higher resolution images and a larger number of possible projections. The use of this equipment is in decline as Computed Tomography offers much better quality of diagnostic information, although at a slightly higher radiation dose. The number of radiographers/technologists skilled in using this equipment is also decreasing.</td>
</tr>
</tbody>
</table>
Stereotactic

Diagnostic imaging can demonstrate images in all three orthogonal planes to provide the approximate location or co-ordinates of pathology, which may be affecting physiological function or displacing other anatomy. The most common example would be the stereotactic location and biopsy of a primary tumour by the use of diagnostic images collected.

Superconducting magnet

Magnet consisting of superconducting windings contained within a sophisticated cryostat or Dewar operating at liquid helium temperatures. A power supply is connected to the superconducting windings initially to ramp up the magnetic field (up to 300A current) to achieve the final operating magnetic field. This electrical supply to the windings is then removed. Once the magnet is ramped up to full field the windings require no additional input of electrical current, except following a quench or controlled ramp down. Power is still required to the magnet system to operate the gradient coils and gas boil-off recovery devices. This type of technology is typically used to produce field strength greater than 0.35 Tesla and up to 5.0T in specialist research applications. These magnets have, in general, a horizontal static field orientation, and stray magnetic fields may extend for large distances from the magnet unless magnetic shielding is used.

Supervised area

An area where the dose received is likely to be more than one-tenth but less than three-tenths of the annual dose limit for adult workers. Such areas are common. There is no restriction of access but work in the area should be subject to an ‘agreed’ scheme of work.

Television video camera

Television video camera is used in conjunction with an image intensifier/amplifier to carry out fluoroscopy and may also be used to transmit images elsewhere.

Tesla (T)

Unit of magnetic induction equal to 10,000 gauss.

TFT – Thin film transistor

This is a transistor made up of extremely thin layers of metal or semiconductor material. The technology is commonly used to manufacture display screens such as those used in laptop computers. The cost of this technology is decreasing rapidly and will probably gradually replace the use of standard cathode ray tube monitors for the display of radiological images in both real time, reporting and review applications.
Tissued
There is small risk that, during intravenous administrations of contrast media for example, the material may not end up in the blood circulation as intended by the clinician. In such instances, the substance may enter other tissues such as muscles etc and this is commonly referred to as tissued injection.

Trendelenburg
A term used to indicate the head-down or adverse tilt of an X-ray tilting table. Such tables normally move from a vertical position through the horizontal to a varying degree of adverse tilt. The range of movement of an individual table is often shown, for example as 90°/30°, which would indicate vertical position in one direction and an adverse tilt or trendelenburg of 30°.

Universal or conventional fluoroscopy equipment
This equipment is similar in design and space requirements to remote fluoroscopy equipment, but in this instance, the radiographer/technologist will operate the equipment from within the examination room.

VQ – Ventilation/Perfusion
A radionuclide imaging lung scan may commonly be referred to as a VQ scan.

Waveguides
In order to maintain the integrity of the radiofrequency shielding, mechanical services such as liquids, gases and electrical cables need to be passed into the scanner room through filtering devices known as waveguides, which are basically long pieces of hollow copper pipes. In the case of air conditioning systems, the waveguides are packed together to form a honeycomb and the ducting is connected either side of the honeycomb. In the case of liquids and gases, these need to be electrically isolated.

X-ray film viewing box
Also referred to as a film viewer box or illuminator. An opal glass-fronted box, evenly illuminated from the rear, on the face of which radiographs are clipped for viewing. Usually provided in multiples of 35 x 43cm modules with switches and/or dimmers.
X-ray fluorography or Digital Spot Images (DSI)

Diagnostic images that are acquired permanently by the use of a combination of an image intensifier and TV camera and recorded digitally usually for reporting purposes and to demonstrate a normal or abnormal examination. The images are usually of higher quality than would be obtained in fluoroscopy and the imaging parameters are set-up to suit the imaging of an area of anatomy. The number of frames per second (fps) acquired will depend on the clinical application and machine and may be as high as 50fps in paediatric cardiac applications. This technique uses much more energy instantaneously than fluoroscopy, up to 100kW per pulse rated for 0.1 seconds.

X-ray fluoroscopy or screening

Continuous images of physiological motion or anatomy acquired using an image intensifier and a television camera. The images are displayed on monitors in the examination area and are used to position the equipment, direct a procedure or catheter into position, for example. The images may be recorded onto videotape or digitally and stored using the imaging computer. The latter option only exists in new equipment. Digital image acquisition allows the operator to select the level of temporal resolution required for the procedure, for example between 3 and 25 frames per second. The electrical energy required to maintain fluoroscopic operation is between 1 and 2kW. The technique is sometimes called screening but should not be confused with clinical screening that is used in mammography, for example.
X-ray generation and detection

X-rays are generated in an X-ray tube by accelerating a focused beam of electrons emitted from a heated filament (the cathode) to impinge at high velocity on a target (the anode). The accelerating voltage between anode and cathode, which varies according to the techniques in use, is normally between 25 and 150kV. The X-rays are emitted from the small area of the target (the focal spot), which is bombarded by the electron beam. These rays have a high penetrating power and can pass through many substances including body tissues.

In their passage through the body, X-rays are partially attenuated, the extent depending on the nature and thickness of the tissues in the path of the beam. By placing a sensitive film (or other detecting device, as in CT scanning) in the path of the emergent beam, an image is formed of the body tissues in terms of their differing abilities to absorb the X-rays.

The rays, which produce the film image, emerge from the X-ray tube through a beam-limiting device and are known as the useful beam. Additional radiation can be present in the form of:

- leakage from the X-ray tube housing;
- scattered radiation, which is radiation generated by the interaction between the useful beam and objects in its path (including the patient) and is emitted in directions other than that of the useful beam;
- residual radiation which, having passed through both patient and cassette, emerges in the direction of the useful beam.

Suitable measure must be taken in the building construction and in the installation, siting and use of X-ray equipment to ensure protection of all persons from unnecessary exposure to these forms of radiation.
X-ray generation and detection (cont.)

The films used in radiography differ from those for most photographic processes in that they consist of a base coated on both sides with emulsion sensitive to light and to X-rays. When the X-rays irradiate a suitable material (usually rare earth phosphors) it fluoresces, and, to enhance or ‘intensity’ the effect of the radiation, the sheet of X-ray film is held in close contact between two fluorescent surfaces known as intensifying screens. The emulsion is thus subjected to the influence of both light and X-rays. These intensify screens are held with the film in a lightproof container known as a cassette; the largest in general use (holding films of 35cm x 43cm size) may at present weigh up to approximately 2.8kg.

X-ray Tomography

A radiographic technique designed to form a diagnostic image of a selected plane within the body. In conventional tomography (as opposed to CT scanning) the method used is to move the X-ray tube and the film in opposite directions during the exposure in such a manner that the desired plane is imaged sharply, but other planes are blurred. The movement is commonly linear, but more complex movements in two dimensions may be employed.
Abbreviations

AEC – automatic exposure control
AGSS – automatic gas scavenging system
CCTV – closed-circuit television
CDC – controlled drugs cupboard
CPD – continuous professional development
CT – computed tomography
CVI – cerebrovascular incident
CXR – chest X-ray
DDA – Disability Discrimination Act
DGH – District General Hospital
DSI – digital spot imaging
DVD – digital versatile disk
ECG – echo-cardiogram
EPR – electronic patient record
ERCP – endoscopic retrograde cholangiopancreatography
FDG – 2-(Fluorine 18) Fluoro-2-Deoxy-0-Glucose
GA – general anaesthetic
GI tract – gastrointestinal tract
GP – general practitioner
HDU – high dependency unit
HSG – histerosalpingography
ID – identification
IEE Standards – International Electrical & Engineering Standards
II – image intensifier
IMRT – intensity modulated radiotherapy
IRR – Ionising Radiations Regulations
ITU – intensive therapy unit

IV – intravenous

LAN – local area network

MDA – Medical Devices Agency

MRA – magnetic resonance angiography

MRC – magnetic resonance console

MRCP – magnetic resonance retrograde cholangiopancreatography

MRI – magnetic resonance imaging

PTCA – percutaneous transluminal coronary angioplasty

PTV – planning target volume

QA and Q/A – quality assurance

RF – radio frequency

SSD/U – sterile services department or unit TLD – thermo-luminescent dosimetry

TOF – time of flight

WAN – wide area network
Basic descriptions of interventional radiological procedures undertaken using X-ray imaging guidance

Vascular imaging

Venography

X-ray fluoroscopy in combination with the use of contrast media may be used as a means of imaging the lower peripheral veins in the assessment of occlusions and stenoses and reduced blood flow. This procedure has been replaced in the majority of institutions by the use of ultrasound imaging.

Fistulogram

Fistulas are simply malformations of the arteries and other blood vessels. X-ray fluoroscopy may be used to provide information on vascular fistulas for further interventional or surgical procedures.

Vascular Intervention

PTA – Percutaneous Transluminal Angioplasty or balloon catheter angioplasty

Percutaneous Transluminal Angioplasty may be used to restore blood flow when the artery has become occluded or stenosed with plaques, scar tissue or other fatty deposits. The flexible catheter is fitted with a small balloon and then moved to the site of the diseased vessel under fluoroscopic control. The balloon is then inflated, which disturbs any deposits, etc and expands the lumen of the blood vessel. In the majority of cases, this re-establishes the patency of blood flow through the vessel or artery. It should be noted that this procedure may not provide a permanent solution and use of stents may be required to prevent reoccurrence of the problem.

Stent placement

Stents are primarily hollow metal or plastic structures that are used to maintain or induce lumen patency. In respect of vascular interventional procedures stents may be used subsequently or instead of balloon catheter angioplasty, as a means of restoring blood flow or restoring arterial or vessel patency. As described for ureteric stenting, one of the largest post procedure complications is the presence of infection, which in some cases may be treated by antibiotics.

TIPS – Transjugular intrahepatic portosystemic shunt

This procedure is performed under imaging control as a means of managing portal hypertension (high venous blood pressure from the liver). Portal hypertension can lead to gastrointestinal haemorrhage (bleeding) and ascites (a collection of large amounts of fluids in the abdomen or peritoneal cavity). This procedure has displaced some of the surgical work undertaken in this area. Patients are always treated on an in-patient basis due to the relatively invasive nature of the technique.
Cardiac pacemaker insertion

Pacemakers are devices used to produce and maintain a normal heart rate in patients who have a heart blockage or other heart problems. The unit consists of a battery that stimulates the heart through an insulated electrode wire attached to the surface of the ventricle (epicardial pacemakers) or lying in contact with the lining of the heart (endocardial pacemakers). Temporary pacemakers have an external battery and stimulate the heart at a fixed rate demand pacemakers are permanently implanted under the skin and sense when the natural heart rate falls below a predetermined value and then stimulate the heart. The procedure can be undertaken in an interventional suite as described in this section or in a dedicated cardiac angiography and interventional suite.

Non-vascular intervention

Percutaneous nephrostomy

This method has displaced surgical nephrostomy as the first line method for renal drainage and accessing the collecting system of the kidneys. Indications for percutaneous nephrostomy include obstruction, kidney stone removal, performing a functional assessment of the kidneys and treating infection. In this procedure, a combination of ultrasound and C-arm fluoroscopy currently provides the most suitable of imaging modalities. During the procedure, the radiologist may need to have good access to the C-arm and table movement controls, so the design of the facility should facilitate this operational requirement. There are some instances where this procedure may be undertaken in an emergency situation.

Ureteric stenting

Ureteric stenting is used as a means of re-establishing patency of one or more of the ureters leading from the kidneys to the bladder. In some cases, the tumours, stones or other types of strictures may block the ureters. There are two approaches, either antegrade (percutaneous) or retrograde (transurethral). The largest complication of stent placement is encrustation. This means that replacement may be required every six months. Replacements can be undertaken on an out-patient basis using a C-arm fluoroscopy device in combination with endoscopy, with the patient under light sedation. In the first instance, however, patients may be seen on an in-patient basis. Another observed complication is the presence of infection following stent placement.

The built environment for interventional suites should therefore support procedures that minimise the risk of infection and also allow for all the additional equipment connected with endoscopy to be located in the examination room. Care of the patient before the procedure also needs to be considered.

Biliary interventional work (drainage, stents, stones etc)

Further information in this regard will appear in future updates of the guidance.
Transjugular liver biopsy

Biopsy of liver tumours may be undertaken under fluoroscopic control where there is a need for great accuracy to avoid piercing a nearby artery or vein or where ultrasound liver biopsy (see below) procedures have proved unsuccessful.

Hickman/Tessio line insertion

In some cases it may be necessary to deliver chemotherapy drugs straight into the systemic to avoid them being directly absorbed by other sensitive organs. This can be achieved placing a temporary catheter in one of the arteries in the chest and ensuring that one end can be easily accessed without percutaneous intervention. This is known as a hickman line. In order to avoid complications, the catheter may be placed into position by the use of X-ray fluoroscopy.

Ultrasound examinations and procedures

Abdominal work example – ultrasound guided percutaneous liver biopsy

Ultrasound guided percutaneous liver biopsy can be used to guide a non-focal right lobe liver biopsy or to image, in real time, needle sampling of a focal lesion. The use of ultrasound guided techniques has many advantages over blind techniques, such as lower complication rates and the benefit to patients with abnormal coagulation physiology. Patients can be seen on a ‘day case’ basis, but should be kept under observation for at least six hours following the procedure. However, patients will need to be preselected for day case procedures, with those not meeting the criteria being seen as in-patients.

Acute appendicitis

Ultrasound imaging can be used in the assessment of acute appendicitis, in particularly estimating the size and position of an enlarged appendix, thereby providing further information to the surgical team.

Vascular and cardiac imaging

Ultrasound imaging is used extensively in cardiac and vascular imaging and has replaced some techniques using ionising radiation, particularly where imaging of young children and neonates is necessary. Ultrasound imaging may be used within specialist but separate facilities diagnosing both vascular and cardiac disease. The facilities associated with the use of ultrasound in cardiology are described in SHPN 54: Facilities for cardiac services. Further information on the use of ultrasound in vascular diseases and the associated built environment implications will be included in future updates of this guidance.

Use in combination with other modalities and techniques – deep vein thrombosis (DVT)

It is common to use ultrasound imaging as a method of complementing other diagnostic imaging investigations. For example, some cases of pulmonary
embolism can be difficult to diagnose using the radionuclide and chest X-ray examinations described in the main text. An ultrasound examination may be used in conjunction with these diagnostic tests, to look for blood clotting in the peripheral veins of the leg otherwise known as DVT and has been clinically linked with existence of pulmonary emboli. The use of ultrasound may provide greater certainty in the overall diagnosis and ensure that the patient is assigned the correct treatment pathway. In this instance, the ultrasound examination would be undertaken almost immediately following the radionuclide examination.

Obstetrics

Ultrasound imaging is commonly used in assessing the development of a foetus from a very early age up to when the child is about to be delivered. In this case, ultrasound imaging can be used to assess the growth of the foetus and in some cases guide amniotic procedures. In some instances, there may be a requirement for the foetus to be scanned while the patient has a full and empty bladder. Therefore the provision of a toilet adjacent to the examination room is seen as important. In some cases, it may be necessary to inform the patient on highly confidential and sensitive issues on the development of their child and thus counselling and quiet rooms should be provided within the suite.

Gynaecology

The availability of ultrasound imaging contrast media has seen the introduction of a number of new techniques. Of particular interest is the use of ultrasound to evaluate fallopian tube patency. In a number of respects, this is similar to HSG procedures described in the main text. The interest has stemmed form the need to move away from a technique that uses ionising radiation. However a recent study has shown that the technique is not as accurate as the fluoroscopy examination and can lead to complications and pain following the procedure. In most cases, patients will need to be kept under clinical observation for at least one to two hours following the procedure.

Prostate and testicular scanning

Ultrasound is one of the main imaging modalities used to detect prostate or testicular cancer. In some cases, images acquired from ultrasound imaging may be used to inform the cancer treatment planning process.

Interventional techniques including intra-luminal ultrasound

This is a relatively new technique, where ultrasound is used to guide catheters in arteries, veins and other hollow structures such as the oesophagus, and is currently under evaluation. Further information on this procedure will be included on future updates of this publication.

Lymph node imaging in support of cancer

It is common for lymph nodes to become involved in some types of tumours when cancer cells spread from the primary site via the systemic circulation.
Cancer tissue becomes embedded and starts growing within the lymph nodes. Ultrasound imaging can be used to assess the size of the lymph nodes and therefore provide information on tumour growth in these glands. In some instances, the ultrasound imaging may be used to support a lymph node biopsy.

Ultrasound mammography

Ultrasound imaging is commonly used in the assessment of suspicious findings following a mammography examination, either after a screening examination or as part of a triple stage assessment. In some instances, ultrasound may be used to guide the interventional biopsy work. Where ultrasound is used as part of a triple stage assessment, ultrasound facilities may be located outside the main department and near dedicated X-ray mammography suites, as part of a breast care unit.

Ophthalmology

High-frequency ultrasound procedures can be used in the diagnosis of pathologies connected with the eye including some connected with the optic nerve. This has, to some degree, replaced X-ray fluoroscopy investigations, which run the inherent risk of causing cataracts.

Tumour imaging in general

Ultrasound plays a general role in the diagnosis and treatment of cancer, in addition to the role identified in assessing the involvement of lymph nodes as secondaries or metastases. Ultrasound can be used to assess the sizes of primary and secondary tumours, provide information to the initial stages of treatment planning and provide follow-up once treatment has commenced.

Musculoskeletal ultrasound

This clinical application still remains limited in many radiology departments. However, high-resolution ultrasound is a versatile quick and dynamic procedure, which accurately depicts even the smallest structures. The use of this technique may have most use in evaluating pathologies in the extremities, in particular in children and examination of superficial structures such as the knee and ankle.
References

Legislation

NHSScotland Publications

SHFN 30: Infection control in the built environment
NHSScotland Property and Environment Forum Executive, 2002

NHSScotland Firecode

SHTM 83: Fire safety in healthcare premises – General fire precautions

SHTM 2007: Electrical services – supply and distribution (Four Parts)
NHSScotland Property and Environment Forum Executive, 1999
SHTM 2011: Emergency electrical services (Four Parts) NHSScotland Property and Environment Forum Executive, 1999

SHTM 2015: Bedhead services (Three Parts) NHSScotland Property and Environment Forum Executive, 1999

SHTM 2025: Ventilation in healthcare premises (Four Parts) NHSScotland Property and Environment Forum Executive, 1999

SHTM 2040: The Control of legionellae in healthcare premises – a code of practice (Six Parts) NHSScotland Property and Environment Forum Executive, 1999

Disability Access

SHFN 14: Disability access NHSScotland Property and Environment Forum Executive, 2000

NHS Estates Publications

Health Building Notes

HBN/SHPN 40 Common activity spaces

Vol 5: Scottish appendix. NHS Estates/NHSScotland (Joint publication), The Stationery Office, 1995

Health Technical Memoranda – Building Components

Health Technical Memoranda – Building Components

HTM 2014 Abatement of electrical interference

HTM 2055 Telecommunications (telephone exchanges)

Department of Health Publications

Technical requirements for the supply and installation of equipment for diagnostic imaging and radiotherapy (TRS 89). Medical Devices Agency, Department of Health, 1989.

Other publications

Air distribution systems (Commissioning code A). The Chartered Institution of Building Services Engineers (CIBSE), 1996.

BS 4533 Luminaires. British Standards Institution. (produced in various sections)

Lighting guide: Hospital and health care buildings (LG2). Chartered Institution of Building Services Engineers (CIBSE), 1989. (under review)

Notes on building materials and references on shielding data for use below 300kVp (Report 41). Institute of Physics and Engineering in Medicine, 1984 (reprint) (www.ipem.org.uk)

Occupational exposure limits (EH40). Health and Safety Executive, HSE Books, issued annually.

Public health engineering (CIBSE Guide G). The Chartered Institution of Building Services Engineers (CIBSE), 1999.

Retention of X-ray films résumé of the issues. Royal College of Radiology, 1991. (www.rcr.ac.uk)

The visual environment for display screen use (LG3). The Chartered Institution of Building Services Engineers (CIBSE), 1996.

Water distribution systems (Commissioning code W). The Chartered Institution of Building Services Engineers (CIBSE), 1994.
