Scottish Health Technical Memorandum 03-01:
Ventilation for healthcare premises
Part B: Operational management and performance verification
Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>Page 6</td>
</tr>
<tr>
<td>Executive summary</td>
<td>Page 9</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>Page 10</td>
</tr>
<tr>
<td>2. Functional responsibilities</td>
<td>Page 15</td>
</tr>
<tr>
<td>3. Ventilation systems – minimum requirements</td>
<td>Page 18</td>
</tr>
</tbody>
</table>

Preface

About Scottish Health Technical Memoranda 6
Structure of the Scottish Health Technical Memorandum suite 7

Executive summary

Who should use this guidance? ... 9
Main recommendations .. 9

1. Introduction

1.5 *Ventilation in healthcare premises* 10
1.7 *Statutory requirements* .. 10
1.8 *Health and Safety at Work etc Act 1974* 10
1.9 *COSHH* ... 11
1.12 *Fire regulations* .. 11
1.14 *Plants installed in units manufacturing medicinal products* 11
1.16 *Plants installed in laboratories* 12
1.17 *Codes of practice and guidance* 12
1.19 *Management responsibilities – general* 12
1.22 *System information* .. 12
1.28 *Frequency of inspections and verifications* 13
1.32 *Implications of PPP/PFI Procurement* 13

2. Functional responsibilities

2.1 *Management responsibilities* 15
2.5 *Designated staff functions* 15
2.16 *Records* .. 16
2.18 *Training* .. 17
2.21 *Specific health and safety aspects* 17

3. Ventilation systems – minimum requirements

3.1 *General requirements* .. 18
3.3 *Location and access* .. 18
3.11 *Basic requirements* ... 19
3.21 *AHU intakes and discharges* 19
3.24 *AHU drainage system* ... 20
3.32 *Dampers* .. 20
3.33 *Fan drives* ... 21
3.36 *Heater & Frost batteries* .. 21
3.38 *Cooling coils* ... 21
3.41 *Humidifiers* ... 22
3.49 *Filtration* .. 22
3.53 *High-efficiency filters – HEPA and ULPA* 23
3.56 Energy recovery ... 23
3.59 Attenuation .. 23
3.60 Identification and labelling .. 23
3.63 Pressure stabilisers ... 24

4. Annual inspection and verification requirements 25
4.1 Ventilation systems inspection ... 25
4.4 Critical ventilation systems .. 25
4.7 Definition of a critical system ... 25
4.9 Annual verification ... 26
4.11 Fabric of the area served .. 26
4.16 Critical ventilation systems – verification standards 26
4.19 Vertical ultra-clean operating theatres 26
4.22 Horizontal ultra-clean operating theatres 29
4.25 Category 3 and 4 laboratories and rooms 30
4.26 Pharmacy aseptic suites .. 30
4.27 Sterile services department – inspection and packing rooms 30
4.28 LEV systems ... 30
4.29 Critical system verification failure 30

5. Inspection and maintenance .. 31
5.1 General ... 31
5.4 Inspection and maintenance of critical systems 31
5.6 AHU drainage .. 31
5.7 Filter changing ... 32
5.14 Changing extract filters containing hazardous substances 33
5.18 Ventilation system cleaning ... 33
5.26 Chilled beams .. 34
5.27 Split and cassette cooling units ... 34
5.28 Portable room cooling units ... 34
5.32 Self-contained mobile filter and/or ultraviolet (UV) light units 34
5.35 Inspection and maintenance records 35

Appendix 1: Annual inspection of critical ventilation systems – AHU and plantroom equipment .. 36

Annual inspection of critical ventilation systems – AHU and plantroom equipment .. 38

Appendix 2: Operating suite annual verification 41

Annual verification of theatre ventilation systems -Theatre suite information ... 42

References .. 45
Acts and regulations .. 45
British Standards .. 45
Health Facilities Scotland Publications 45
Other publications .. 46
Disclaimer

The contents of this document are provided by way of general guidance only at the time of its publication. Any party making any use thereof or placing any reliance thereon shall do so only upon exercise of that party's own judgement as to the adequacy of the contents in the particular circumstances of its use and application. No warranty is given as to the accuracy, relevance or completeness of the contents of this document and Health Facilities Scotland, a Division of NHS National Services Scotland, shall have no responsibility for any errors in or omissions therefrom, or any use made of, or reliance placed upon, any of the contents of this document.
Acknowledgements

Health Facilities Scotland would like to thank the principal contributors and the Steering Group led by the Department of Health for their efforts in producing the HTM 03-01 Part B document.

HTM 03-01 Part B has been updated and amended by Health Facilities Scotland for use in NHSScotland as SHTM 03-01 Part B. The contribution made by the National Heating & Ventilation Advisory Group is gratefully acknowledged.
Preface

About Scottish Health Technical Memoranda

Scottish Engineering Health Technical Memoranda (SHTMs) give comprehensive advice and guidance on the design, installation and operation of specialised building and engineering technology used in the delivery of healthcare.

The focus of Scottish Health Technical Memorandum guidance remains on healthcare-specific elements of standards, policies and up-to-date established best practice. They are applicable to new and existing sites, and are for use at various stages during the whole building lifecycle.

Healthcare building life-cycle

Healthcare providers have a duty of care to ensure that appropriate engineering governance arrangements are in place and are managed effectively. The Scottish Engineering Health Technical Memorandum series provides best practice engineering standards and policy to enable management of this duty of care.

It is not the intention within this suite of documents to repeat unnecessarily international or European standards, industry standards or UK Government legislation. Where appropriate, these will be referenced.

Healthcare-specific technical engineering guidance is a vital tool in the safe and efficient operation of healthcare facilities. Scottish Health Technical Memorandum guidance is the main source of specific healthcare-related guidance for estates and facilities professionals.

The core suite of eight subject areas provides access to guidance which:

- is more streamlined and accessible;
• encapsulates the latest standards and best practice in healthcare engineering;
• provides a structured reference for healthcare engineering.

Structure of the Scottish Health Technical Memorandum suite

The series of engineering-specific guidance will ultimately contain a suite of eight core subjects pending a re-assessment of Firecode SHTMs 81-86.

Scottish Health Technical Memorandum 00: Policies and principles (applicable to all Health Technical Memoranda in this series)

Scottish Health Technical Memorandum 01: Decontamination

Scottish Health Technical Memorandum 02: Medical gases

Scottish Health Technical Memorandum 03: Heating and ventilation systems

Scottish Health Technical Memorandum 04: Water systems

Scottish Health Technical Memorandum 05: Reserved for future use.

Scottish Health Technical Memorandum 06: Electrical services

Scottish Health Technical Memorandum 07: Environment and sustainability

Scottish Health Technical Memorandum 08: Specialist services

Some subject areas may be further developed into topics shown as -01, -02 etc and further referenced into Parts A, B etc.

Example: Scottish Health Technical Memorandum 06-02 Part A will represent Electrical Services – Electrical safety guidance for low voltage systems.

In a similar way Scottish Health Technical Memorandum 07-02 will simply represent Environment and Sustainability - EnCO2de.

All Scottish Health Technical Memoranda are supported by the initial document Scottish Health Technical Memorandum 00 which embraces the management and operational policies from previous documents and explores risk management issues.

Some variation in style and structure is reflected by the topic and approach of the different review working groups.
Engineering guidance
Executive summary

Scottish Health Technical Memorandum 03-01: ‘Ventilation in healthcare premises’ is published in two parts. Part A deals with the design and installation of ventilation systems; Part B covers operational management.

The document gives comprehensive advice and guidance on the legal requirements, design implications, maintenance and operation of specialised ventilation in all types of healthcare premises.

The guidance contained in this Scottish Health Technical Memorandum applies to new installations and major refurbishments of existing installations.

Scottish Health Technical Memorandum 03-01 supersedes all previous versions of Scottish Health Technical Memorandum 2025: ‘Ventilation in healthcare premises’.

Who should use this guidance?

This document is aimed at healthcare management, estates managers and operations managers.

Main recommendations

- all ventilation plant should meet a minimum requirement in terms of the control of *Legionella* and safe access for inspection and maintenance;
- all ventilation plant should be inspected annually;
- the performance of all critical ventilation systems (such as those servicing operating suites) should be verified annually.
1. Introduction

1.1 Scottish Health Technical Memorandum 03-01: ‘Ventilation in healthcare premises’ is published in two parts. Part A deals with design and validation of general and specialised ventilation; Part B covers operational management.

1.2 The document gives comprehensive advice and guidance to healthcare management, design engineers, estates managers and operations managers on the legal requirements, design implications, maintenance and operation of specialised ventilation in all types of healthcare premises.

1.3 The guidance contained in this Scottish Health Technical Memorandum applies to new installations and major refurbishments of existing installations.

1.4 Scottish Health Technical Memorandum 03-01 supersedes all previous versions of Scottish Health Technical Memorandum 2025: ‘Ventilation in healthcare premises’.

Ventilation in healthcare premises

1.5 Ventilation is used extensively in all types of healthcare premises to provide a safe and comfortable environment for patients and staff. More specialised ventilation is provided in areas such as operating departments, critical care areas and isolation facilities for primary patient treatment.

1.6 It is also installed:

- to ensure compliance with the quality assurance requirements of items processed in pharmacies and sterile services departments;
- to protect staff from harmful organisms and toxic substances (for example in laboratories).

Statutory requirements

1.7 Increased health risks to patients will occur if ventilation systems do not achieve and maintain the required standards. The link between surgical site infection and theatre air quality has been well established.

If the ventilation plant has been installed to dilute or contain harmful substances, its failure may expose people to unacceptable levels of contamination. Proven breaches of the statutory requirements can result in prosecution and may also give rise to a civil suit against the operators.

Health and Safety at Work etc Act 1974

1.8 The Health and Safety at Work etc Act 1974 is the core legislation that applies to ventilation installations. As these installations are intended to prevent
contamination, control closely the environment, dilute contaminants or contain hazards, their very presence indicates that potential risks to health have been identified.

COSHH

1.9 The Control of Substances Hazardous to Health (COSHH) Regulations 2002 place upon management an obligation to ensure that suitable measures are in place to protect their staff and others affected by the work activity. These methods may include both safe systems of work and the provision of a specialised ventilation system. In laboratories the requirements are often met by the provision of fume cupboards and microbiological safety cabinets.

1.10 Where specialised ventilation plant is provided as part of the protection measures, there is a statutory requirement that it be correctly designed, installed, commissioned, operated and maintained. The local exhaust ventilation (LEV) section of COSHH requires that the system be examined and tested at least every 14 months by a competent person and that management maintain comprehensive records of its performance, repair and maintenance.

1.11 Certain substances have workplace exposure limits (WELs) set out in the Health and Safety Executive’s Guidance Note EH40 – ‘Workplace exposure limits: containing the list of workplace exposure limits for use with the Control of Substances Hazardous to Health Regulations 2002 (as amended)’. If specialised ventilation systems are provided in order to achieve these standards, they will be subject to the COSHH Regulations as above.

Fire regulations

1.12 The Fire Regulations require that if ventilation ductwork penetrates the fabric of a building, it should be designed and installed so as to contain the spread of fire (see Firecode: SHTM 81: ‘Fire Precautions in New Hospitals, Version 3’ and the requirements of the Scottish Technical Handbooks, Non-Domestic, Section 2: Fire, published by the Scottish Building Standards Agency).

1.13 It is management’s responsibility to ensure that the standards applied during the design and installation are not reduced during the subsequent operation and maintenance of the equipment.

Plants installed in units manufacturing medicinal products

1.14 Plants installed in units manufacturing medicinal products to the standards set out in the current European guide to good manufacturing practice (http://ec.europa.eu/enterprise/pharmaceuticals/eudralex/homev4.htm) may also be subject to particular legislation with regard to their operation and maintenance.

1.15 There are specific requirements under the Medicines Act 1968 to maintain accurate records of plant performance, room conditions and maintenance.
events. Such records would need to be preserved for up to 35 years as part of a quality assurance audit trail.

Plants installed in laboratories

1.16 Specialised ventilation plants installed in laboratories dealing with research, development or testing, whether involving drugs, animals or genetically modified organisms, may be subject to particular legislation with regard to their operation in addition to that mentioned above.

Codes of practice and guidance

1.17 All ventilation systems should conform to the principles set out in the Health and Safety Commission’s Approved Code of Practice and guidance document ‘Legionnaires’ disease: the control of *Legionella* bacteria in water systems’ (commonly known as L8), and Scottish Health Technical Memorandum 04-01: ‘The control of *Legionella*, hygiene, ’safe’ hot water, cold water and drinking water systems’.

1.18 Scottish Health Facilities Note 30: ‘Infection Control in the Built Environment, Design and planning’ guides and stimulates thinking on the planning of and execution of new construction and refurbishment works in all types of healthcare facilities. Ventilation systems (covered in this guidance) play an important role in reducing the risk of Healthcare Associated Infection.

Management responsibilities – general

1.19 It is a management responsibility to ensure that inspection, service and maintenance activities are carried out safely without hazard to staff, patients or members of the public.

1.20 Those required to monitor and/or maintain ventilation equipment will need to show that they are competent to do so (see Section 2).

1.21 Maintenance procedures should be reviewed periodically to ensure that they remain appropriate.

System information

1.22 When new ventilation systems are accepted for use, full information as to their designed mode of operation together with recommended maintenance procedures should be provided as part of the handover procedure.

1.23 In many existing systems, original design and commissioning information will not be available. It will therefore be necessary to determine a suitable level of system performance based on the function, purpose and age of the installation.
1.24 Part A of this Scottish Health Technical Memorandum gives design parameters for new installations.

1.25 Section 3 of this document sets out the minimum standards for all air-handling units (AHUs) and their air distribution systems.

1.26 Ventilation system records and logbooks should be kept of the commissioning information, operational management routine, monitoring and maintenance. The Health and Safety Executive and other interested bodies have a statutory right to inspect them at any time. All records should be kept for at least five years.

Note 1: In the event of a reportable incident connected with ventilation equipment or the area that it serves; all records and plant logbooks will need to be collected as evidence.

1.27 A set of specimen maintenance checklists is given in Appendix 1.

Frequency of inspections and verifications

1.28 All ventilation systems should be subject to, at least, a simple visual inspection annually.

1.29 Ventilation systems serving critical care areas should be inspected quarterly and their performance measured and verified annually. The quarterly inspection should be a simple visual check; the annual verification will be a more detailed inspection of the system together with the measurement of its actual performance.

1.30 The LEV section of the COSHH Regulations contains a statutory requirement that systems installed to contain or control hazardous substances be examined and tested at least every 14 months by a competent person.

1.31 Regular tests, at intervals agreed with the local fire prevention officer, will need to be carried out in order to demonstrate the continuing efficiency of the fire detection and containment systems. These may be in addition to the inspections detailed above. Records of these tests should be kept.

Implications of PPP/PFI Procurement

1.32 While the ultimate responsibilities as set out in this SHTM in terms of overall management remain with NHS Boards, when a new or recent hospital has been procured via the Public-Private Partnership (PPP) or Private Finance Initiative (PFI) routes, there are changes in the chain of responsibilities.

1.33 More often than not, the operator of the facility will subcontract or enter into partnership with a Facilities Management (FM) Provider who will maintain and operate mechanical and electrical installations, including ventilation systems. It is not unknown for the FM provider to be the NHS Board’s own estates staff. Whichever organisation carries out the functions set out in this SHTM, it will be
necessary for the same practice and procedures to be carried out, records
maintained and reports prepared to maintain an audit trail. These have to be
submitted to the NHS Board for which the hospital has been established. The
NHS Board will retain in-house estates staff and/or technical advisers to monitor
these records and reports, having the right to comment where performance
standards are not being achieved, inspect installations, and seek to ensure that
remedial measures are put in hand and monitored as to their effect.

In the event that a civil suit is served on a NHS Board, they would seek redress
from the operator of the Hospital, where appropriate.

1.34 Issues related to control of infection where mechanical ventilation systems are
implicated will be the remit of the NHS Board’s control of infection teams set up
for the purpose and representation should be arranged for estates staff or the
FM Provider so that any remedial action agreed can be set in motion
without delay.
2. Functional responsibilities

Management responsibilities

2.1 Clear lines of managerial responsibility should be in place so that no doubt exists as to who is responsible for the safe operation and maintenance of the equipment.

2.2 A periodic review of management systems should take place in order to ensure that the agreed standards are being maintained.

2.3 Those required to inspect, verify or maintain ventilation equipment will need to show that they are competent to do so. As a minimum they should have sufficient knowledge of its correct operation to be able to recognise faults.

2.4 It is anticipated that training in the validation and verification of specialised healthcare ventilation systems for Authorised Persons and Competent Persons will become available during the life of this Scottish Health Technical Memorandum.

Designated staff functions

2.5 A person intending to fulfil any of the staff functions specified below should be able to prove that they possess sufficient skills, knowledge and experience to be able to perform safely the designated tasks.

Management

2.6 Management is defined as the owner, occupier, employer, general manager, chief executive or other person who is ultimately accountable for the safe operation of premises.

Designated Person

2.7 This person provides the essential senior management link between the organisation and professional support. The Designated Person should also provide an informed position at board level.

Authorising Engineer (Ventilation) (AE(V))

2.8 The AE(V) is defined as a person designated by Management to provide independent auditing and advice on ventilation systems and to review and witness documentation on validation.
Authorised Person (Ventilation) (AP(V))

2.9 The AP(V) will be an individual possessing adequate technical knowledge and having received appropriate training, appointed in writing by the Designated Person (in conjunction with the advice provided by the AE(V)), who is responsible for the practical implementation and operation of Management’s safety policy and procedures relating to the engineering aspects of ventilation systems.

Competent Person (Ventilation) (CP(V))

2.10 The CP(V) is defined as a person designated by Management to carry out maintenance, validation and periodic testing of ventilation systems.

Infection Control Officer

2.11 The Infection Control Officer (or consultant microbiologist if not the same person) is the person nominated by management to advise on monitoring the infection control policy and microbiological performance of the systems.

2.12 Major policy decisions should be made through an infection control committee. The infection control committee should include representatives of the user department and estates and facilities or their nominated representative (that is, the Authorised Person).

Plant Operator

2.13 The Plant Operator is any person who operates a ventilation installation.

User

2.14 The User is the person responsible for the management of the unit in which the ventilation system is installed (for example head of department, operating theatre manager, head of laboratory, production pharmacist, head of research or other responsible person).

Contractor

2.15 The Contractor is the person or organisation responsible for the supply of the ventilation equipment, its installation, commissioning or validation. This person may be a representative of a specialist ventilation organisation or a member of the general manager/chief executive’s staff.

Records

2.16 A record should be kept of those appointed to carry out the functions listed above. The record should clearly state the extent of the postholder’s duties and responsibilities, and to whom they are to report.
2.17 Substitute or replacement staff should be designated in order to cover for sickness, holidays and staff transfers.

Training

2.18 Routine inspection and maintenance procedures can cause risks to the health of staff carrying out the work and those receiving air from the plant. All those involved should be made aware of the risks, and safe systems of work should be agreed. Suitable safety equipment should be provided as necessary, and training in its use should be given.

2.19 Any training given should be recorded, together with the date of delivery and topics covered.

2.20 Training in the use of safety equipment and a safe system of work will need to be repeated periodically in order to cater for changes in staff.

Specific health and safety aspects

2.21 Staff engaged in the service and maintenance of extract ventilation systems from pathology departments, mortuaries, laboratories, source-protective isolation facilities and other areas containing a chemical, biological or radiation hazard may be particularly at risk. In these cases, the risk should be identified and assessed.

2.22 The means by which the system can be rendered safe to work on should be determined, and a permit-to-work on the system implemented.

2.23 Training in the exact procedures should be given to all staff involved.

2.24 Some healthcare facilities may contain specialised units that are subject to access restrictions (for example pharmacy aseptic suites). Estates or contract staff requiring access may need additional training or to be accompanied when entering the unit.

Note 2: See also the following guidance published by the Health and Safety Commission’s Health Services Advisory Committee:

- ‘Safe working and the prevention of infection in clinical laboratories and similar facilities’;
- ‘The management, design and operation of microbiological containment laboratories’;
- ‘Safe working and prevention of infection in the mortuary and post-mortem room’.
3. Ventilation systems – minimum requirements

General requirements

3.1 All ventilation systems should be inspected annually to ensure conformity with minimum requirements, which are designed to:

- ensure safe access when carrying out routine service and maintenance activities;
- prevent or control risks associated with *Legionella* and other potential hazardous organisms;
- check that the system remains fit for purpose;
- maintain records of outcomes.

3.2 Every effort should be made to ensure that all AHUs achieve the minimum requirement set out below.

Location and access

3.3 AHUs should be secured from unauthorised access.

3.4 Units located on roofs must have a safe and permanent means of access. Suitable precautions must be in place to prevent personnel or equipment from falling during maintenance activities.

3.5 Units located outside at ground level should be secured within a compound to prevent unauthorised access. Vehicles should be excluded from the vicinity to ensure that exhaust fumes will not be drawn into intakes.

3.6 All parts of the AHU should be easily and safely accessible for routine inspection and service.

3.7 The area around an AHU within a building should be tanked to prevent water penetration to adjacent areas, and should be adequately drained.

3.8 Fire precautions should be in accordance with Firecode.

3.9 Combustion equipment must not be located in a fire compartment that houses air-handling equipment.

3.10 Plantrooms that house AHUs must not be used for general storage. Care should be taken to ensure that combustible material is not kept in the plantroom.
Basic requirements

3.11 The plant must not contain any material or substance that could support the growth of microorganisms.

3.12 The plant must not contain any material or substance that could cause or support combustion.

3.13 Access to items that require routine service, such as filters, coils and chiller batteries, should be via hinged doors.

3.14 Items requiring infrequent access such as attenuators may be via clipped or bolted-on lift-off panels.

3.15 All doors and panels should be close-fitting and without leaks.

3.16 Every effort should be made to ensure that access is via fixed ladders and platforms or pulpit-style movable steps.

3.17 Electrical and mechanical services should not restrict or impede access to those parts of the AHU that require inspection.

3.18 Viewing ports and internal illumination should be fitted in order to inspect filters and drainage trays.

3.19 Internal illumination should be provided by fittings to at least IP55 rating. Fittings should be positioned so that they provide both illumination for inspection and task lighting.

3.20 A single switch should operate all of the lights in a unit.

AHU intakes and discharges

3.21 Intake and discharge points should not be situated where they will cause vitiated air to be drawn into a system (see paragraphs 3.61-3.71) in Part A, which give detailed information). In existing systems, it may be necessary to extend the intake or discharge point to a suitable position.

3.22 Each intake and discharge point should be fitted with corrosion-resistant weatherproof louvres or cowls to protect the system from driving rain. The inside of the louvres should be fitted with a mesh of not less than 6mm and not more than 12mm to prevent infestation by vermin and prevent leaves being drawn in.

3.23 The duct behind a louvre should be self-draining. If this is not practicable, it should be tanked and provided with a drainage system. Cleaning access must be provided either from the outside via hinged louvres or by access doors in the plenum behind the louvre. Where a common plenum is provided, cleaning access should be via a walk-in door.
AHU drainage system

3.24 All items of plant that could produce moisture must be provided with a drainage system. The system will comprise a drip-tray, glass trap, air break and associated drainage pipework.

3.25 Some existing units may not have been mounted far enough above the floor to permit the correct installation of a drainage system. If the AHU cannot be raised to an adequate height, an alternative arrangement (such as a pump-out system) must be provided.

3.26 The drip-tray should be constructed of a corrosion-resistant material (stainless steel is preferred) and be so arranged that it will completely drain. To prevent ‘pooling’, it is essential that the drain connection should not have an upstand and that a slope of approximately 1 in 20 in all directions should be incorporated to the drain outlet position. The tray must be completely accessible or, for smaller units, easily removable for inspection and cleaning.

3.27 Each drip-tray should be provided with its own drain trap. The drain trap should be of the clear (borosilicate) glass type. This permits the colour of the water seal to be observed, thus giving an early indication of corrosion, biological activity or contamination within the duct (Part A, Section 4, paragraphs 4.20-4.25 refer and paragraph 3.29 of this Part B).

3.28 The trap should have a means for filling and should incorporate couplings to facilitate removal for cleaning. It should be located in an easily visible position where it will not be subject to casual knocks. The pipework connecting it to the drainage tray should have a continuous fall of not less than 1 in 20.

3.29 Traps fitted to plant located outside or in unheated plantrooms may need to be trace-heated in winter. The trace heating should be checked for operation and must not raise the temperature of water in the trap above 5°C.

3.30 Water from each trap must discharge via a clear air gap of at least 15mm above the unrestricted spill-over level of either an open tundish connected to a drainage stack via a second trap, or a floor gully (or channel). A support should be provided to ensure that the air gap cannot be reduced. More than one drain trap may discharge into the tundish, providing each has its own air break.

3.31 Drainage pipework may be thermoplastic, copper or stainless steel. Glass should not be used. The pipework should be a minimum diameter of 22mm and have a fall of at least 1 in 60 in the direction of flow. It should be well supported, and located so as not to inhibit access to the AHU.

Dampers

3.32 AHUs serving critical areas and those areas that are shut down out of hours should be fitted with motorised low-leak shut-off dampers located immediately behind the intake and discharge of each supply and extract system.
Fan drives

3.33 Fan-drive trains, whether supply or extract, should be easily visible without the need to remove access covers. Protecting the drive train with a mesh guard is the preferred option. For weatherproof units designed to be located outside, the fan drive should be enclosed. It should be easily visible through a viewing port with internal illumination and be accessed via a lockable, hinged door.

3.34 The motor windings of induction-drive ‘plug’ motor arrangements and in-line axial fans having a pod motor within the air stream must be protected from over-temperature by a thermistor and lockout relay.

3.35 It is necessary to ensure that – should the computer control system or its software develop a fault – the fan can be switched to a direct start with fixed speed and manual operation. This is particularly important for critical care systems serving operating suites, high dependency care units of any type, isolation facilities, laboratories and pharmaceutical production suites.

Heater & Frost batteries

3.36 Access for cleaning must be provided to both sides of frost batteries and heater-batteries.

3.37 Where auxiliary wet heater-batteries are located in false ceilings, they should be fitted with a catch tray and leak alarm. The catch tray should be installed under both the battery and the control valve assembly to protect the ceiling from leaks. A moisture sensor and alarm should be fitted in the tray. Placing wet heater batteries in ceiling voids should be avoided if at all possible.

Cooling coils

3.38 Each cooling coil – whether within the AHU or within a branch duct – must be fitted with its own independent drainage system as specified above. A baffle or similar device must be provided in the drip-tray to prevent air bypassing the coil, and the tray should be large enough to capture the moisture from the eliminator, bends and headers.

3.39 The cooling-coil control valve should close upon selection of low speed, system shutdown, low air-flow or fan failure.

3.40 Where auxiliary wet-cooling coils are located in false ceilings, they should be fitted with a catch tray and leak alarm. The catch tray should be installed under both the battery and the control valve assembly to protect the ceiling from leaks. A moisture sensor and alarm should be fitted in the tray.
Humidifiers

3.41 Humidifiers are not generally required. Where they are fitted, but have been out of use for a significant period of time, they should be removed. All associated pipework should also be removed back to its junction with the running main.

3.42 Where humidifiers are fitted and their use is still required, they should fully conform to the installation standard set out in Section 4 of Part A.

3.43 The section of ductwork containing the humidifier may need to be periodically decontaminated. Hinged access doors with viewing ports and internal illumination should be provided.

3.44 All humidifiers must be fitted with their own independent drainage system as detailed above.

3.45 Only steam-injection humidifiers, whether mains fed or locally generated, are suitable for use in air-conditioning systems within healthcare facilities. Water humidifiers, if fitted, should be removed.

3.46 Self- and locally-generated steam humidifiers must be supplied with potable water. The installation should be capable of being isolated, drained and cleaned. Section 4 in Part A of this Scottish Health Technical Memorandum gives further details.

3.47 Some steam generators are of a type that requires regular cleaning and descaling. The installation should enable them to be physically isolated from the air duct in order to prevent contamination of the air supply by cleaning agents.

3.48 The humidifier control system should fully conform to the standard set out in Sections 4 and 6 of Part A.

Filtration

3.49 Filters must be securely housed and sealed in well-fitting frames that minimise air bypass. Air bypass significantly reduces filter efficiency: the higher the filter grade, the greater the effect. Mounting frames should be designed so that the air flow pushes the filter into its housing to help minimise air bypass.

3.50 All filters should be of the dry type. Panel filters are generally used as pre-filters and should be positioned on the inlet side of the supply fan, downstream of the frost battery. Where required, secondary filters (these will be bags or pleated paper) should be on the positive-pressure side of the fan.

3.51 The filter installation should provide easy access to filter media for cleaning, removal or replacement; therefore, a hinged access door should be provided. The upstream side of the filter should be visible for inspection through a viewing port with internal illumination.
3.52 All filters should be provided with a means of checking the differential pressure across them. Direct-reading dial-type gauges marked with clean and dirty sectors are preferred.

High-efficiency filters – HEPA and ULPA

3.53 Where fitted, HEPA filters should be of the replaceable-panel type with leak-proof seals. Their installation should permit the validation of the filter and its housing.

3.54 HEPA filters are sometimes used in extract systems for the containment of hazardous substances or organisms. They may be fitted with pre-filters to extend their service life.

3.55 When used for the containment of hazardous substances, the installation should incorporate design provision for the subsequent safe removal and handling of contaminated filters by maintenance staff.

Energy recovery

3.56 Energy recovery, where fitted, will require cleaning access to both sides of the device.

3.57 Whichever type of energy recovery device is fitted, the extract side should be protected by a G3 filter and provided with a drainage system to remove condensate.

3.58 The heat-recovery device should be controlled in sequence with the main heater-battery, and may need to incorporate a control to prevent the transfer of unwanted heat when the air-on condition rises above the plant’s required set point.

Attenuation

3.59 Cleaning access should be provided at both ends of any attenuator unit.

Identification and labelling

3.60 All supply and extract ventilation systems should be clearly labelled. The label should identify both the AHU and the area that it serves. The lettering should be at least 50mm high and be mounted in an easily visible place near the fan of the unit. Any sub-systems and the principal branch ducts should be similarly labelled.

3.61 The direction of air-flow should be clearly marked on all main and branch ducts.

3.62 All air-flow test-points should be clearly identified and the size of the duct given.
Pressure stabilisers

3.63 Pressure stabilisers should be unobstructed and silent in operation.
4. Annual inspection and verification requirements

Ventilation systems inspection

4.1 All ventilation systems should be subject to at least a simple visual inspection annually.

4.2 The purpose of the inspection is to establish that:

- the system is still required;
- the AHU conforms to the minimum standard (see Section 3);
- the fire containment has not been breached;
- the general condition of the system is adequate for purpose;
- the system overall is operating in a satisfactory manner.

4.3 It is recommended that a simple check sheet be used to record the result of the inspection. Examples are given in Appendices 1 and 2.

Critical ventilation systems

4.4 All critical ventilation systems should be inspected quarterly and verified at least annually. In some circumstances the verification may need to be carried out more frequently.

4.5 The quarterly inspection should be as detailed in paragraphs 4.1 – 4.3.

4.6 The purpose of the annual verification will be to ensure additionally that the system:

- achieves minimum standards specific to the application;
- is operating to an acceptable performance level;
- remains fit for purpose.

Definition of a critical system

4.7 Ventilation systems serving the following are considered critical:

- operating theatres of any type, including rooms used for investigations (for example catheter laboratories);
- patient isolation facility of any type;
- critical care, intensive treatment or high-dependency unit;
- neonatal unit;
• Category 3 or 4 laboratory or room;
• pharmacy aseptic suite;
• inspection and packing room in a sterile services department;
• MRI, CAT and other types of emerging imaging technologies that require particularly stable environmental conditions to remain within calibration;
• any system classified as an LEV system under the COSHH Regulations;
• any other system that clearly meets the definition.

4.8 The loss of service from such a system would seriously degrade the ability of the premises to deliver optimal healthcare.

Annual verification

4.9 The annual verification is intended to establish that:

• the system is still required;
• the AHU conforms to the minimum standard (see Section 3);
• the fire containment has not been breached;
• the general condition of the ventilation system is adequate;
• the fabric of the area served is satisfactory;
• the system performance is adequate with respect to the functional requirement – this will require:
 – a full measure of the supply and extract air-flow rates;
 – the calculation of room air-change rates if applicable;
 – the measurement of room differential pressures if applicable;
 – the measurement of room noise levels;
 – air-quality checks if appropriate;
 – a check on the control functions.

4.10 An assessment should then be made as to whether the system overall is fit for purpose and operating in a satisfactory manner.

Fabric of the area served

4.11 The building elements in the room or rooms served by a critical ventilation system should also be suitable for the function. As an example, in a suite of rooms comprising an operating theatre complex, the following elements should be checked:

• the ceiling should be complete and, if tiled, all tiles should be clipped down and sealed;
• the walls and floors should be free from significant construction and finish defects;
• windows and their trickle vents should be sealed and locked shut;
• the doors should close completely and the door closers should be correctly adjusted to hold them against the room pressure;
• all service penetrations and access panels should be sealed to prevent uncontrolled air flow between rooms and service voids;
• steps should have been taken (if necessary) to prevent portable equipment and stock items from obstructing low-level supply, transfer or extract airflow paths.

4.12 Failure to achieve a suitable standard will render even the most sophisticated ventilation system ineffective.

4.13 All fire dampers should be tested as part of the annual verification.

4.14 LEV systems will be subject to an examination and test by a competent person at least every 14 months.

4.15 Table 1 overleaf provides a model for the verification of critical ventilation systems.

Critical ventilation systems – verification standards

4.16 Unless otherwise specified below, the ventilation system should achieve not less than 75% of the design air-change rate given in Appendix 1 of Part A, or its original design parameters.

4.17 The pressure regime should achieve not less than 75% of the design value given in Appendix 1 of Part A, or its original design parameters; and the pressure gradient relationships with regards to surrounding areas must be maintained.

4.18 The sound levels given in Table 2 overleaf are maximum permissible levels and should not be exceeded. Measurements should be made using at least a Type 2 sound meter fitted with a muff. Its accuracy should be checked using a calibration sound source before use.
<table>
<thead>
<tr>
<th>Step</th>
<th>Question</th>
<th>Information/standard required</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is the system still required?</td>
<td>Why was it installed?</td>
<td>Is that function still required?</td>
</tr>
<tr>
<td>2</td>
<td>Does the AHU achieve the minimum standard?</td>
<td>Health and safety aspects
Intake/discharge positions
Inspection access
Legionella control and drainage
Fire and electrical safety
Leaks, cleanliness and insulation
Filtration</td>
<td>Inspect to ascertain compliance with minimum standards set out in Section 3 Part B of this SHTM</td>
</tr>
<tr>
<td>3</td>
<td>Is the air distribution system satisfactory?</td>
<td>Access
Fire dampers
Cleanliness
Insulation
Identification
Room terminals
Pressure stabilisers</td>
<td>Inspect to ascertain continued fitness for purpose</td>
</tr>
<tr>
<td>4</td>
<td>Does the measured system performance still accord with the design intent and achieve a minimum acceptable standard?</td>
<td>Design air velocities
Design air-flow rates
Room air-change rates
Pressure differentials
Noise levels
Air quality</td>
<td>Establish the design values
Measure the system output to verify its performance</td>
</tr>
<tr>
<td>5</td>
<td>Does the control system function correctly?</td>
<td>Desired environmental conditions
Control sequence logic
Run; set back, off philosophy</td>
<td>Establish the design requirement
Inspect/test to verify performance</td>
</tr>
<tr>
<td>6</td>
<td>Having regard to the foregoing, is the system ‘fit for purpose’ and will it only require routine maintenance in order to remain so until the next scheduled verification?</td>
<td>Filter changes
System cleaning
Performance indication
Performance monitoring
Performance measurement</td>
<td>Yes or No</td>
</tr>
<tr>
<td>7</td>
<td>What routine service and maintenance will be required for the system to remain fit for purpose and function correctly until the next scheduled verification?</td>
<td>Filter changes
System cleaning
Performance indication
Performance monitoring
Performance measurement</td>
<td>Decide inspection frequency and maintenance schedule</td>
</tr>
</tbody>
</table>

Table 1: Operational management and routine verification process model
Vertical ultra-clean operating theatres

4.19 The following additional measurements should be taken:

- the average air velocity at the 2m level under the canopy: it should achieve a minimum average of 0.38 m/s for a partial wall system and 0.3 m/s for a full wall system;
- the air velocity within the inner zone at the 1m level: every reading should achieve a minimum velocity of 0.2 m/s.

4.20 The air velocity measurements are to be taken using the equipment, test grid and method set out in Section 8 of Part A.

<table>
<thead>
<tr>
<th>Location</th>
<th>Design sound level (NR)</th>
<th>Measured sound level (dB (A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-clean operating room</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Conventional operating room</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>All other non-specified rooms</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Corridors</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Recovery room</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Ward areas, sleeping areas</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 2: Maximum sound levels (service noise only)

Note 3: There is no requirement to carry out filter scanning or entrainment tests at the annual verification unless the HEPA filters or recirculating air fans are changed, or the system is in some other significant way disturbed or altered. Changing the filters in the AHU or recirculating air filters does not constitute a significant disturbance to the ultra-clean ventilation (UCV) unit.

4.21 Should the UCV terminal fail to achieve a suitable standard, resulting in the need to disturb or replace the HEPA filters or recirculating air fans, the unit should be revalidated using the procedure given in Section 8 of Part A.

Note 4: Scottish Health Technical Memorandum 08-01 (2011) gives detailed guidance on acoustics and the measurement of sound.

Horizontal ultra-clean operating theatres

4.22 The following additional measurements should be taken:

- the discharge velocity test at 1m, 1.5m and 2m in front of the terminal: the average velocity should be not less than 0.4 m/s.

4.23 The measurements are to be taken using the equipment, test grid and method set out in Section 8 of Part A.
4.24 Should the UCV terminal fail to achieve a suitable standard, resulting in the need to disturb or replace the HEPA filters or recirculating air fans, the unit should be revalidated using the procedure given in Section 8 of Part A.

Category 3 and 4 laboratories and rooms

4.25 These areas should conform to the requirements of current information published by the Advisory Committee on Dangerous Pathogens and the Health and Safety Executive:

- ‘The management, design and operation of microbiological containment laboratories’;
- ‘Biological agents: managing the risks in laboratories and healthcare premises’; and
- ‘Biological agents: the principles, design and operation of Containment Level 4 facilities’.

Pharmacy aseptic suites

4.26 Pharmacy aseptic suites should conform to the requirements of the European guide to good manufacturing practice (http://ec.europa.eu/enterprise/pharmaceuticals/eudralex/homev4.htm) and the requirements of the Medicine Inspectorate if a licensed manufacturing unit.

Sterile services department – inspection and packing rooms

4.27 Inspection and packing rooms should conform to the requirements of BS EN ISO 14644 and any additional requirements for the processing of medical devices, if applicable (see also Scottish Health Planning Note 13: ‘Sterile services department’).

LEV systems

4.28 LEV systems should conform to the Health and Safety Executive’s ‘The maintenance, examination and testing of local exhaust ventilation’.

Critical system verification failure

4.29 Should a critical system be unable to achieve the standard set out above, it should be taken out of service. If healthcare provision needs prevent the system being taken out of service, the senior manager of the user department should be informed in writing that the system performance is suboptimal. A copy of the notice should be sent to the infection control committee.

4.30 If a critical system is refurbished in order to bring it to a suitable standard, it should be subject to the full validation procedure set out in Section 8 of Part A or other application-specific guidance as appropriate.
5. Inspection and maintenance

General

5.1 Inspection and maintenance activities should be assessed to ensure that they do not create a hazard for those who undertake the work or for those who could be affected by it.

5.2 The degree and frequency of maintenance should relate to the function of the system, its location, its general condition and the consequence of failure.

5.3 Specimen inspection and maintenance checklists are given in Appendices 1 and 2.

Inspection and maintenance of critical systems

5.4 The loss of service of these systems would seriously degrade the ability of the premises to deliver optimal healthcare. In order to ensure reliable service provision, it is essential to inspect, verify and maintain these systems at appropriate intervals.

5.5 For many of these systems a permit-to-work will need to be completed to ensure that taking the ventilation system out of service does not compromise the activities of the user department. In any event, it will be necessary to liaise with the user department when switching the system off to carry out routine inspection and maintenance.

AHU drainage

5.6 AHU drainage systems comprise a drainage tray, glass trap, connecting pipework and an air break. The system should be inspected to ensure that it is clean and operating correctly. The cleanliness of the drainage tray and colour of the water in the trap will give an indication of a fault condition (see Table 3 overleaf).
<table>
<thead>
<tr>
<th>Colour of water</th>
<th>Probable cause and comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Satisfactory.</td>
</tr>
<tr>
<td>Green</td>
<td>Copper corrosion of pipework</td>
</tr>
<tr>
<td></td>
<td>Possible leak in battery tubing.</td>
</tr>
<tr>
<td>White</td>
<td>Aluminium corrosion of battery fins.</td>
</tr>
<tr>
<td>Black</td>
<td>General dirt</td>
</tr>
<tr>
<td></td>
<td>Filter faulty allowing air bypass</td>
</tr>
<tr>
<td></td>
<td>System is overdue for a thorough clean</td>
</tr>
<tr>
<td></td>
<td>Urgent action required.</td>
</tr>
<tr>
<td>Brown/red</td>
<td>Iron corrosion (rust) within the duct</td>
</tr>
<tr>
<td></td>
<td>May indicate a specific Legionella hazard</td>
</tr>
<tr>
<td></td>
<td>Immediate action required.</td>
</tr>
<tr>
<td>Bubbly/slimy</td>
<td>Microbiological activity within the duct</td>
</tr>
<tr>
<td></td>
<td>May indicate a specific Legionella hazard</td>
</tr>
<tr>
<td></td>
<td>Immediate action required.</td>
</tr>
</tbody>
</table>

Table 3: Colour of water in glass trap

Filter changing

5.7 Dirty supply air filters may pose a general dust hazard when being changed.

5.8 Dirty extract- and return-air filters may pose an increased level of hazard. This will relate to the particular contamination within the air that they have filtered. Filters handling extract air from general areas are unlikely to present a significantly greater hazard than that posed by dirty supply air filters.

5.9 Care should be taken to protect staff from inhaling the dust. If there is a need to enter the duct when changing filters, a dust mask should be worn.

5.10 Dirty filters should be carefully removed and placed in the box that contained the replacement filters or in a plastic bag. On completion of the work, the dirty filters should be removed from the plantroom and disposed of appropriately.

5.11 The duct in the area of the filter housing should be carefully vacuumed before fitting the replacement filters. This will prevent particles (that is, those that are shed when the dirty filters are disturbed) being blown into the system downstream.

5.12 It is important to ensure that replacement filters are fitted the right way round. Most panel filters are manufactured with a membrane or wire support mesh on their downstream side. Alternatively they may be colour-coded. The manufacturer’s instructions regarding fitting should be followed.

5.13 Bag filters should be fitted with the pockets vertical. Care should be taken to remove any transit tapes and to ensure that the individual pockets are separate and free to inflate.
Changing extract filters containing hazardous substances

5.14 Filters handling extract air from an LEV system will obviously present a hazard and should be subject to a safe system of work.

5.15 Filters used in an extract system for the containment of hazardous substances or organisms should incorporate design provision for their safe removal when so contaminated. This may be achieved by:

- sealing the hazardous substance into the filter before it is removed;
- a system to fumigate the filter to kill any organisms;
- housing it in a ‘safe change’ unit that permits the filter to be ejected into a bag and sealed without staff having to come into direct contact with it.

5.16 The method chosen should reflect the nature of the hazard.

5.17 Filters fitted to remove hazardous substances from extract air are classed as hazardous waste and should be handled and disposed of accordingly.

Ventilation system cleaning

5.18 The intake section of a ventilation system should be vacuumed-out as necessary to remove visible particles.

5.19 AHUs should be vacuumed-out and/or washed down internally as necessary to remove obvious dust and dirt.

5.20 Chiller batteries, humidifier units, energy-recovery batteries or plates and their drainage systems should be washed down with hot water annually to remove visible contamination.

5.21 Supply air distribution ductwork conveys air that has been filtered. It will require internal cleaning only when it becomes contaminated with visible dirt. The frequency of cleaning will depend on the age of the system and grade of the AHU final filter but will typically be in excess of ten years. There is no requirement to clean ductwork annually. A rapid build-up of visible dirt within a supply duct is an indication of a failure of the filtration or its housing.

5.22 Extract air systems handle unfiltered air. They should be cleaned as frequently as necessary in order to maintain their operating efficiency. Room extract terminals, particularly those sited at low level in critical care areas, will need regular cleaning.

5.23 On completion of cleaning, the ductwork should not be ‘fogged’ with chemicals. This treatment has no lasting biocidal effect and is responsible for initiating the breakdown of the galvanised coating of ductwork. This will result in accelerated corrosion of the inside of the duct, with the products of corrosion being shed into the air stream. It will also significantly shorten service life.
5.24 Following duct cleaning, all service hatches should be checked to ensure that they have been correctly replaced and do not leak.

5.25 Duct-cleaning equipment that uses rotating brushes or a vacuum unit can easily damage flexible sections of ductwork. On completion of cleaning, all flexible duct sections should be checked for rips and tears. The straps that secure them to rigid duct sections and air terminals should also be checked to ensure that there is no air leakage.

Chilled beams

5.26 The efficiency of these units will rapidly decline if they become blocked with fluff/lint. They should be inspected every six months and cleaned as appropriate.

Split and cassette cooling units

5.27 These units incorporate internal recirculation air filters and a drainage system to remove condensate from the cooling coil. The systems should be inspected and cleaned every three months.

Portable room cooling units

5.28 Portable units are sometimes kept in store or hired-in to cope with temporary local situations giving rise to excessive temperatures. They typically incorporate internal recirculation air filters and a drainage system to remove condensate from the cooling coil. Units employing an internal water reservoir and wick to promote evaporative cooling must not be used in healthcare premises.

5.29 The infection control team must be consulted before these types of unit are deployed.

5.30 The units should be inspected and thoroughly cleaned before being taken into use. Units that are to be used in areas containing immunocompromised patients will, unless new, need to be fumigated before use.

5.31 All portable units should be inspected and cleaned every week that they remain in use.

Self-contained mobile filter and/or ultraviolet (UV) light units

5.32 The efficacy of these units is directly related to their cleanliness. In this respect, the manufacturer’s instructions regarding service/maintenance and lamp and filter replacement should be closely followed.

5.33 Units that have been used in isolation rooms or areas containing infective patients will need to be fumigated before being used in other locations, or returned to store or to the hirer.
5.34 Filters fitted to remove hazardous substances from the recirculated room air are classed as hazardous waste and should be handled and disposed of accordingly (see also Scottish Health Technical Note 3: NHS Scotland Waste Management Guidance Parts A-D).

Inspection and maintenance records

5.35 Records of inspection and maintenance activities should be kept for at least five years.
Appendix 1: Annual inspection of critical ventilation systems – AHU and plantroom equipment

Definition of terms used on survey form

General condition

<table>
<thead>
<tr>
<th>End of useful life</th>
<th>Action: Urgent replacement indicated.</th>
</tr>
</thead>
</table>
| This should be clear from the condition of the AHU and its associated services and plant. The main indicators will be:
 - extensive internal and/or external corrosion of the AHU casing;
 - failure of filter housings to prevent air bypass;
 - general corrosion of heater and cooling battery fins, attenuator surfaces etc;
 - significant failure to meet minimum standards;
 - associated plant services and control elements in a poor condition or not able to fulfil their purpose;
 - AHU aged 20 years or more. | |

<table>
<thead>
<tr>
<th>Poor</th>
<th>Action: Extensive refurbishment or prolonged replacement indicated.</th>
</tr>
</thead>
</table>
| Should be fairly apparent but should include an assessment of the degree of corrosion;
 - cleanliness of coils and batteries;
 - quality of filter mountings and their ability to prevent air bypass;
 - fan and drive train condition;
 - the control system elements’ ability to fulfil their function;
 - condition of the access doors and inspection covers. The age of the AHU is generally less important. | |

<table>
<thead>
<tr>
<th>Average</th>
<th>Action: Faults capable of correction at next maintenance period.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some faults but generally free of significant corrosion, clean internally and conforming to minimum standards.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good</th>
<th>Action: Routine maintenance will preserve standard of equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conforming to the minimum standards, obviously cared for and subject to routine maintenance.</td>
<td></td>
</tr>
</tbody>
</table>
Compliance with minimum standards (questions 2 to 23, 32 and 33)

<table>
<thead>
<tr>
<th>Poor</th>
<th>More than three answers are negative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>Management action require by estates/facilities department.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>No more than 3 answers are negative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>Maintenance action required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good</th>
<th>No answers are negative, full compliance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>None.</td>
</tr>
</tbody>
</table>

Maintenance quality (questions 5, 12, 26 to 31 and 34 to 40)

<table>
<thead>
<tr>
<th>Poor</th>
<th>More than three answers are negative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>Management action required by estates/facilities department.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>No more than three answers are negative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>Maintenance action required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good</th>
<th>No answers are negative.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action:</td>
<td>None.</td>
</tr>
</tbody>
</table>
Annual inspection of critical ventilation systems – AHU and plantroom equipment

<table>
<thead>
<tr>
<th>No</th>
<th>Survey question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plant running?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Are the unit and its associate plant secure from unauthorised access?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Is the unit safely accessible for inspection and maintenance?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Is the air intake positioned to avoid short-circuiting with extract or foul air from other sources such as gas scavenging outlets?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Are all inspection lights operating?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Are motorised dampers fitted to the intake and discharge?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Are the fan motor(s) outside of the air stream?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Survey question</td>
<td>Yes</td>
<td>No</td>
<td>Comments</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>8</td>
<td>Is the fan drive train visible without removing covers?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Is the cooling coil located on the discharge side of the fan?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Is an energy-recovery system fitted (state type)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Are condensate drainage systems fitted to all energy recovery systems, cooling coils and humidifiers in accordance of Section 3 of Scottish Health Technical Memorandum 03-01, Part B?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Are drainage traps clean and filled with water? (see Table 3 in SHTM 03-01, Part B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Is the drain trap air break at least 15mm?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>If a humidifier is fitted, state the type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Is the humidifier capable of operation?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Is there space to safely change the filters safely?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Are there test holes in the principal ducts?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Are the test holes capped?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>What is the general condition of the exterior of the AHU?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Are the principal ducts lagged?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>What is the general condition of the associated control valves and pipework?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Is the pipework adequately lagged?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Is the system clearly labelled?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Record prefilter differential pressure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Record main filter differential pressure.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switch plant off. Fit padlock to isolator.
<table>
<thead>
<tr>
<th>No</th>
<th>Survey question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Did the motorised dampers close on plant shutdown?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Is the vermin/insect screen clean?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Is the intake section including the fog coil clean?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Are the pre-filters correctly fitted with no air by-pass?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Are all drive belts correctly aligned and tensioned?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Is the cooling-coil matrix cleaned?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Are all drip trays fully accessible or capable of being removed for cleaning and have a fall to drain?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Are the drainage trays stainless?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Are the drainage trays clean?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Are the drainage traps free of water?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Is the matrix clean for each heater-battery?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Have the main filters been correctly fitted with no air by-pass?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Are AHU and its associated main ductwork clean internally?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remove padlock and Re-start plant.

<table>
<thead>
<tr>
<th>No</th>
<th>Survey question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Did unit restart satisfactorily?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test automatic fan-motor change-over, if fitted

<table>
<thead>
<tr>
<th>No</th>
<th>Survey question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Did automatic changeover operate satisfactorily?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional comments

(For example: air leaks from access doors; control valves leaking or passing; general cleanliness of the area around the unit; or any other items of concern.)

Competent person/Authorised person..
Appendix 2: Operating suite annual verification

Definition of terms used on survey form

Assessment of compliance with Scottish Health Technical Memorandum 03-01 (all questions relevant to the type of theatre)

<table>
<thead>
<tr>
<th>Poor</th>
<th>Action: Urgent management action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>- air volumes and hence air-change rates is less than 75% of the design;</td>
<td></td>
</tr>
<tr>
<td>- room pressure differentials do not ensure a flow from clean to less clean areas;</td>
<td></td>
</tr>
<tr>
<td>- supply or extract air diffusers are not clean;</td>
<td></td>
</tr>
<tr>
<td>- pressure stabilisers not clean and/or not operating correctly;</td>
<td></td>
</tr>
<tr>
<td>- significant faults or failures of indicators on surgeon’s panel;</td>
<td></td>
</tr>
<tr>
<td>- visible faults in the fabric of the suite;</td>
<td></td>
</tr>
<tr>
<td>- doors unable to close completely;</td>
<td></td>
</tr>
<tr>
<td>- general air of neglect.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>Action: Maintenance action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>- air pressure and room pressure differentials approximate to the original design values;</td>
<td></td>
</tr>
<tr>
<td>- supply air diffusers clean but extracts visibly fouled;</td>
<td></td>
</tr>
<tr>
<td>- most pressure stabilisers clean and operating correctly;</td>
<td></td>
</tr>
<tr>
<td>- some of the indicators on the surgeon's panel not working;</td>
<td></td>
</tr>
<tr>
<td>- minor faults in the fabric and décor of the suite.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good</th>
<th>Action: None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better than average</td>
<td></td>
</tr>
</tbody>
</table>

Maintenance quality (all questions relevant to the type of theatre)

<table>
<thead>
<tr>
<th>Poor</th>
<th>Action: Management action required by estates/facilities department</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than three answers are negative;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average</th>
<th>Action: Maintenance action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>No more than three answers are negative;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good</th>
<th>Action: None</th>
</tr>
</thead>
<tbody>
<tr>
<td>No answers are negative</td>
<td></td>
</tr>
</tbody>
</table>
Annual verification of theatre ventilation systems - Theatre suite information

<table>
<thead>
<tr>
<th>Hospital</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theatre name/no.</td>
<td>Type of Theatre</td>
</tr>
<tr>
<td>Date of survey</td>
<td>AHU location & ID</td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
</tbody>
</table>

Compliance with SHPN & SHTM

| Maintenance quality | |
| Poor | Average | Good |

<table>
<thead>
<tr>
<th>No</th>
<th>Survey question</th>
<th>Yes</th>
<th>No</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Has the annual verification of the AHU been carried out?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Are windows hermetically sealed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Is the theatre /are the theatre and prep room complete and sealed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Are there any significant faults in the fabric of the rooms in the suite?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Are room light fittings correctly sealed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Do all doors close completely and hold against the room pressure?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Are the pressure stabilisers operating correctly and silently?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Are the supply and extract air terminals and pressure stabilisers visibly clean?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Measure and record the operating room temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Does this accord with that displayed on the surgeon’s panel?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Survey question</td>
<td>Yes</td>
<td>No</td>
<td>Comments</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-----</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>11</td>
<td>Measure and record the operating room relative humidity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Does this accord with that displayed on the surgeon’s panel?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Measure and record the supply and extract airflow in the principal ducts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Measure and record the airflow at all supply and extract terminals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Does the derived air-change rate achieve at least 75% of the design?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>For UCV units, also measure and record the air velocities within the canopy using the method set out in Section 8 of Scottish Health Technical Memorandum 03-01 (Part A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Do the air velocities achieve the standard appropriate for the type of canopy?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Measure and record the room differential pressures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Do the room differential pressures ensure a flow of air from the clean to the less clean areas?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Measure and record the noise levels in the principal rooms of the suite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Do the noise levels fall below the limits set out in Table 2 of SHTM 03-01 Part B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Check the operation of all ventilation control functions represented on the surgeon's panel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Do the indicators accurately represent the operational state of the ventilation system(s)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Survey question</td>
<td>Yes</td>
<td>No</td>
<td>Comments</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>24</td>
<td>For UCV systems: are the UCV and AHU interlocked to ensure that the AHU runs at full speed when the UCV is at operating speed or at set-back? (see Table 7 in Scottish Health Technical Memorandum 03-01, Part A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>With the UCV running at setback, does the system maintain the standard of a conventional operating room?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>For all theatres: with the system running at set-back, does it maintain a flow of air from the clean to the less clean areas?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional comments

(For example: the general décor; are the suite and its ventilation systems suitable for their designated functions?)

Competent person/Authorised person…………………………………………………………
References

Acts and regulations

Scottish Technical Handbooks, Non Domestic, Section 2: Fire. Scottish Building Standards Agency. 2007 http://sbsa.gov.uk

Health and Safety at Work etc Act 1974. HMSO, 1974.

Medicines Act 1968. TSO, 1968.

British Standards

BS EN ISO 14644-1: 1999. Clean rooms and associated controlled environments. Classification of air cleanliness.

Health Facilities Scotland Publications

Scottish Health Planning Note 13: Sterile services department. Health Facilities Scotland forthcoming.

Scottish Health Technical Memorandum 04-01: The control of *Legionella*, hygiene, ‘safe’ hot water, cold water and drinking water systems. Health facilities Scotland, 2011.

Other publications

